計畫名稱:核能四廠發電工程施工期間環境監測

(期間:八十八年七月至八十八年九月)

開 發 單 位:台灣電力股份有限公司

執行監測單位: 美商傑明工程顧問股份有限公司

提 送 日 期:中華民國八十八年十二月

核能四廠發電工程施工期間環境監測 八十八年第三季(七月至九月)季報 目 錄

表	目錄	
昌	目錄	
照	片目錄	ŧ
審	查意見	. 及辦理情形
前	言	
第	一章	監測內容概述1-1
	1.1	工程進度1-1
	1.2	監測情形概述1-7
	1.3	監測計畫概述1-7
	1.4	監測位址1-14
	1.5	品保品管作業措施概要1-30
第	二章	監測結果數據分析2-1
	2.1	氣象觀測2-1
	2.2	空氣品質2-15
	2.3	噪音與振動監測2-30
	2.4	交通流量監測2-60
	2.5	河川水文監測2-91
	2.6	河川水質監測2-96
	2.7	廠區放流水監測2-107
	2.8	地下水監測2-112
	2.9	河域生態監測2-124
	2.10	海域水質監測2-134
	2.11	海域生態監測2-137

	2.12	漁業	纟調査	2-157
	2.13	海象	智調查	2-174
	2.14	景鸛	見與遊憩活動調査	2-182
	2.15	海域	禒漂砂	2-197
第三	章	檢討	與建議	3-1
	3.1	監測	J 結果檢討與因應對策	3-1
		3.1.1	監測結果綜合檢討分析	3-1
		3.1.2	監測結果異常現象因應對策	3-98

參考文獻

附錄

附錄 | 檢測執行單位之認證資料

附錄 || 採樣與分析方法

附錄Ⅲ 品保/品管查核紀錄

附錄Ⅳ 原始數據

表 目 錄

表一	核四廠施工環境監測各工作項目辦理單位一覽表前-3
表 1.1-1	核能四廠前期工程本季施工進度與執行情形一覽表(88
	年 7~9 月)1-3
表 1.2-1	核四施工環境監測 88 年 7 月~9 月監測成果摘要表1-8
表 1.3-1	核能四廠發電工程施工期間環境監測變更內容對照表1-10
表 1.3-2	核四施工環境監測本季執行情形一覽表1-11
表 2.1-1	核四施工環境監測風速與風向本季觀測結果2-3
表 2.1-2	核四施工環境監測氣溫本季觀測結果2-7
表 2.1-3	核四施工環境監測露點溫度本季觀測結果2-8
表 2.1-4	核四施工環境監測相對濕度本季觀測結果2-9
表 2.1-5	巴斯魁爾(Pasquill)穩定度分類法2-11
表 2.1-6	核四施工環境監測大氣穩定度本季機率分佈統計表2-12
表 2.1-7	核四施工環境監測日射量本季觀測結果2-13
表 2.1-8	核四施工環境監測紫外線輻射量本季觀測結果2-14
表 2.2-1	核四施工環境監測空氣品質 88 年 7~9 月監測日期一覽表 .2-16
表 2.2-2	核四施工環境監測空氣品質 88 年 7~9 月監測綜合結果表 .2-17
表 2.2-3	核四空氣品質 88 年 7~9 月監測結果表2-18
表 2.2-4	核四施工環境監測空氣品質 88 年 7 月監測綜合結果表 2-19
表 2.2-5	核四施工環境監測空氣品質 88 年 8 月監測綜合結果表 2-20
表 2.2-6	核四施工環境監測空氣品質 88 年 9 月監測綜合結果表 2-21
表 2.3-1	核四施工環境監測本季 6 月份噪音監測成果統計表2-31
表 2.3-2	核四施工環境監測本季7月份噪音監測成果統計表2-32
表 2.3-3	核四施工環境監測本季8月份噪音監測成果統計表2-33
表 2.3-4	核四施工環境監測本季9月份噪音監測成果統計表2-34
表 2.3-5	核四施工環境監測本季 6 月份振動監測成果統計表2-35
表 2.3-6	核四施工環境監測本季7月份振動監測成果統計表2-36
表 2.3-7	核四施工環境監測本季8月份振動監測成果統計表 2-37

表	2.3-8	核四施工環境監測本季9月份振動監測成果統計表2-38
表	2.4-1	核四施工環境監測交通量本季 6、7 月份監測成果統計表2-61
表	2.4-2	核四施工環境監測交通量本季 8、9 月份監測成果統計表 2-62
表	2.4-3	多車道郊區公路服務水準評值準則建議表2-88
表	2.4-4	核四施工環境監測本季 6 月份道路服務水準等級分析 2-89
表	2.4-5	核四施工環境監測本季 7 月份道路服務水準等級分析 2-89
表	2.4-6	核四施工環境監測本季 8 月份道路服務水準等級分析 2-90
表	2.4-7	核四施工環境監測本季 9 月份道路服務水準等級分析2-90
表	2.5-1	核四施工環境監測石碇溪河川水位本季(88年第三季)監
		測結果2-92
表	2.5-2	核四施工環境監測雙溪河川水位本季(88年第三季)監測
		結果2-93
表	2.5-3	核四施工環境監測河川斷面積、含砂量、流速與流量本季
		(88 年第三季)監測結果2-95
表	2.6-1	核四施工環境監測石碇溪河川水質本季(88年第三季)監
		測結果2-97
表	2.6-2	核四施工環境監測雙溪河川水質本季(88年第三季)監測
		結果2-98
表	2.6-3	核四施工環境監測河口鹽度本季監測結果2-99
表	2.6-4	地面水體適用性質分類2-100
表	2.6-5	保護生活環境相關環境基準2-100
表	2.6-6	保護人體健康相關環境基準2-101
表	2.6-7	河川污染程度分類表2-104
表	2.6-8	核四施工環境監測河川水質污染程度本季推估結果2-104
表	2.6-9	WQI5 之水質點數計算式2-105
表	2.6-10)歐陽氏 WQI5 水質分類等級表2-105
表	2.6-11	L 核四施工環境監測河川 WQI5 指標評估結果2-106
表	2.7-1	核四施工環境監測施工區放流水水質本季(88年第三季)
		監測結果2-108

表	2.7-2	與本計畫相關之 87 年放流水標準2-110
表	2.7-3	本計畫區目前施工尖峰期間施工人員數量統計表2-111
表	2.7-4	本計畫區目前施工期間污水量及污染量推估表2-111
表	2.8-1	核四施工環境監測地下水本季水位標高調查結果統計表2-113
表	2.8-2	核四施工環境監測地下水水質本季監測結果2-118
表	2.9-1	核四廠附近河川葉綠素甲調查報告2-125
表	2.9-2	核四電廠附近河川附著藻調查結果2-126
表	2.9-3	核四電廠附近河川浮游植物調査結果2-127
表	2.9-4	核四電廠附近河川浮游動物調查結果2-129
表	2.9-5	核四電廠附近河川水生昆蟲調查報告2-130
表	2.9-6	核四電廠附近河川魚類及無脊椎動物調查報告2-131
表	2.10-1	核四施工環境監測海水水質本季監測結果2-135
表	2.11-1	核能四廠預定地附近海域生態環境現況分析表(民國 88
		年 7 月 6 日)2-138
表	2.11-2	核四施工環境監測海域生態植物性浮游生物細胞密度與
		分佈狀況 88 年 7 月調查結果2-141
表	2.11-3	核四施工環境監測海域各測站浮游動物之種類與個體量
		88年7月調查結果2-144
表	2.11-4	核四施工環境監測海域生態沙質區底棲無脊椎動物 88 年
		8月調查結果2-146
表	2.11-5	核四施工環境監測海域生態岩礁區底棲無脊椎動物各季
		採樣之調查結果2-147
表	2.11-6	核四施工環境監測海域生態岩礁區底棲無脊椎動物 88 年
		8月調查結果2-150
表	2.11-7	核四施工環境監測海域生態仔稚魚種類與個體量 88 年 7
		月調查結果2-151
表	2.11-8	核四施工環境監測海域生態成魚各季採樣之調查結果 2-152
表	2.11-9	核能四廠附近海域大型藻類調查結果(88年8月)2-155
表	2.11-10	核四施工環境監測海域鹽寮礁石區不同水深各隨機方塊

		區(50*50cm ²)出現之珊瑚種數與覆蓋度2-156
表	2.12-1	九孔養殖戸的經營型態2-158
表	2.12-2	九孔養殖戸平均生產狀況2-158
表	2.12-3	九孔養殖戸銷售狀況2-158
表	2.12-4	九孔養殖戸平均成本2-160
表	2.12-5	九孔養殖戸平均每平方公尺所花費的各項成本2-160
表	2.12-6	漁撈戸每月之作業範圍2-161
表	2.12-7	漁撈戸每月出海次數2-161
表	2.12-8	漁撈戸各月作業漁法作業次數百分比2-162
表	2.12-9	漁撈戸每月之平均漁獲獲產量2-163
表	2.12-10)漁撈戸銷售狀況2-165
表	2.12-1	l 漁撈戸平均成本2-165
表	2.12-12	2
表	2.12-13	3
		情形2-166
表	2.12-14	4 貢寮地區 1999 年 6 月~1999 年 8 月刺網漁業之 CPUE 及
		IPUE2-169
表	2.12-1	5 貢寮地區 1999 年 6 月~1999 年 8 月釣具漁業之 CPUE 及
		IPUE2-169
表	2.13-1	核四施工環境監測海象調查本季沿岸潮汐調查結果2-181
表	2.14-1	核四施工環境監測本季實際遊客人數調查結果2-183
表	2.14-2	核四施工環境監測本季門票數調查結果2-183
表	2.14-3	本季各觀景點自然完整性之評分明細表2-194
表	2.15-1	核四施工環境監測本季海域底質漂砂採樣點編號表2-198
表	2.15-2	核四施工環境監測本季海灘漂砂採樣點編號表2-199
表	2.15-3	核四施工環境本季海域水樣之含砂量分析表2-200
表	3.1-1	核四施工環境監測歷次空氣品質總懸浮微粒最高二十四小
		時值監測結果3-3
表	3.1-2	核四施工環境監測空氣品質氮氧化物最高日平均值監測結

		果3-3
表	3.1-3	核四施工環境監測歷次空氣品質氮氧化物最高小時值監測
		結果3-3
表	3.1-4	核四施工環境監測空氣品質二氧化氮最高日平均值監測結
		果3-6
表	3.1-5	核四施工環境監測空氣品質二氧化氮最高小時值監測結果 3-7
表	3.1-6	核四施工環境監測空氣品質一氧化碳最高小時值監測結果 3-8
表	3.1-7	核四施工環境監測空氣品質一氧化碳最高八小時值監測結
		果3-9
表	3.1-8	核四施工環境監測空氣品質非甲烷碳氫化合物最高日平均
		值監測結果3-10
表	3.1-9	核四施工環境監測空氣品質非甲烷碳氫化合物最高小時值
		監測結果3-11
表	3.1-10	核四施工環境監測歷次噪音監測結果統計表3-24
表	3.1-11	核四施工環境監測歷次振動 $L_{10}(24$ 小時)監測結果統計表 $3-37$
表	3.1-12	核四施工環境監測歷次交通流量監測結果比較表3-41
表	3.1-13	核四施工環境監測歷年與本季平均地下水水位標高調查
		結果比較表3-52
表	3.1-14	核四施工環境監測地下水水質歷年與本季 pH 值監測結果
		表3-53
表	3.1-15	核四施工環境監測地下水水質歷年與本季導電度監測結
		果表3-54
表	3.1-16	核四施工環境監測地下水水質歷年與本季氯鹽監測結果表 3-55
表	3.1-17	核四施工環境監測地下水水質歷年與本季生化需氧量監
		測結果表3-56
表	3.1-18	核四施工環境監測地下水水質歷年與本季化學需氧量監
		測結果表3-57
表	3.1-19	核四施工環境監測地下水水質歷年與本季氨氮監測結果表 3-58

表	3.1-20	核四施工環境監測地下水水質歷年與本季總有機碳監測
		結果表
表	3.1-21	核四施工環境監測地下水水質歷年與本季總硬度監測結
		果表3-60
表	3.1-22	核四施工環境監測地下水水質歷年與本季鐵測值監測結
		果表3-61
表	3.1-23	核四施工環境監測地下水質歷年與本季濁度測值監測結
		果表3-62
表	3.1-24	核四施工環境監測海域生態浮游植物歷次優勢種出現情
		形比較表
表	3.1-25	核四施工環境監測鹽寮海濱公園及福隆海水浴場歷次實
		際售票數與現場遊客調查數之比較3-93
表	3.1-26	核四施工環境監測景觀品質調查結果評分表3-97
表	3.1-27	上次監測之異常狀況及處理情形3-99
表	3.1-28	本次監測之異常狀況及處理情形3-100

圖 目 錄

몹	1.1-1	核能四廠前期工程本季施工區域位置圖1-6
몸	1.4-1	核四施工環境監測氣象觀測站位置圖1-15
8	1.4-2	核四施工環境監測空氣品質監測站位置圖1-15
8	1.4-3	核四施工環境監測噪音與振動及交通流量監測站位置圖1-17
昌	1.4-4	核四施工環境監測河川水文監測站位置圖1-19
몹	1.4-5	核四施工環境監測河川水質及廠區放流水監測站位置圖1-20
몹	1.4-6	核四施工環境監測地下水監測站位置圖1-21
몹	1.4-7	核四施工環境監測河域生態監測站位置圖1-23
	1.4-8	核四施工環境監測海域水質監測站位置圖1-24
	1.4-9	核四施工環境監測海域生態監測站位置圖1-25
	1.4-10	核四施工環境監測海象調查 CTD、潮汐及水溫測站位置圖1-27
몹	1.4-11	核四施工環境監測景觀環境品質及遊憩使用調查位置圖1-28
몸	1.4-12	核四施工環境監測海域漂砂採樣站位置圖1-29
몹	2.1-1	核四施工環境監測低塔氣象塔 88 年 7、8 月風花圖2-4
몹	2.1-2	核四施工環境監測低塔氣象塔 88 年 9 月風花圖2-5
몹	2.2-1	核四施工環境監測空氣品質總懸浮微粒 88 年 7 月至 9 月
		最高 24 小時比較分析圖2-22
몹	2.2-2	核四施工環境監測空氣品質氮氧化物 88 年 7 月至 9 月最
		高日平均值比較分析圖2-22
몹	2.2-3	核四施工環境監測空氣品質氮氧化物 88 年 7 月至 9 月最
		高小時值比較分析圖2-23
8	2.2-4	核四施工環境監測空氣品質二氧化氮 88 年 7 月至 9 月最
		高日平均值比較分析圖2-23
8	2.2-5	核四施工環境監測空氣品質二氧化氮 88 年 7 月至 9 月最
		高小時値比較分析圖2-24
<u>=</u>	2.2-6	核四施工環境監測空氣品質一氧化碳 88 年 7 月至 9 月最
		高小時値比較分析圖2-24

昌	2.2-7	核四施工環境監測空氣品質一氧化碳 88 年 7 月至 9 月最
		高八小時値比較分析圖2-25
昌	2.2-8	核四施工環境監測空氣品質 NMHC 88 年 7 月至 9 月最高
		日平均值比較分析圖2-25
昌	2.2-9	核四施工環境監測空氣品質 NMHC 88 年 7 月至 9 月最高
		小時值比較分析圖2-26
昌	2.3-1	核四施工環境監測台 2 與縣 102 甲交叉口本季(6月份)噪
		音 Leq 逐時變化圖2-39
昌	2.3-2	核四施工環境監測台 2 與縣 102 甲交叉口本季(6月份)
		振動 Lv ₁₀ 逐時變化圖2-39
몹	2.3-3	核四施工環境監測鹽寮海濱公園本季(6月份)噪音 Leq 逐時
		變化圖2-40
몹	2.3-4	核四施工環境監測鹽寮海濱公園本季(6月份)振動 Lv ₁₀ 逐
		時變化圖2-40
昌	2.3-5	核四施工環境監測福隆街上本季(6月份)噪音 Leq 逐時變化
		圖
昌	2.3-6	核四施工環境監測福隆街上本季(6月份)振動 Lv ₁₀ 逐時變
		化圖2-41
몹	2.3-7	核四施工環境監測 102 縣道之新社橋本季(7月份第一次)噪音
		Leq 逐時變化圖 2-42
몹	2.3-8	核四施工環境監測 102 縣道新社橋本季(7月份第一次)振動
		Lv ₁₀ 逐時變化圖2-42
몹	2.3-9	核四施工環境監測過港部落本季(7月份第一次)噪音 Leq
		逐時變化圖2-43
몹	2.3-10	核四施工環境監測過港部落本季(7月份第一次)振動 Lv ₁₀
		逐時變化圖2-43
昌	2.3-11	核四施工環境監測台2與縣102甲交叉口本季(7月份)
		噪音 Leq 逐時變化圖2-44
모	2.3-12	核四施工環境監測台 2 與縣 102 甲交叉口本季(7月份)

		振動 Lv ₁₀ 逐時變化圖2-44
昌	2.3-13	核四施工環境監測鹽寮海濱公園本季(7月份)噪音 Leq
		逐時變化圖2-45
昌	2.3-14	核四施工環境監測鹽寮海濱公園本季(7月份)振動 Lv ₁₀
		逐時變化圖2-45
昌	2.3-15	核四施工環境監測福隆街上本季(7月份)噪音 Leq 本季
		逐時變化圖2-46
昌	2.3-16	核四施工環境監測福隆街本季(7月份)振動 Lv10 逐時變
		化圖2-46
昌	2.3-17	核四施工環境監測 102 縣道之新社橋本季(7月份第二次)
		噪音 Leq 逐時變化圖2-47
昌	2.3-18	核四施工環境監測 102 縣道之新社橋本季(7月份第二次)
		振動 Lv ₁₀ 逐時變化圖2-47
=	2.3-19	核四施工環境監測過港部落本季(7月份第二次)噪音 Leq
		逐時變化圖2-48
뫁	2.3-20	核四施工環境監測過港部落本季(7月份第二次)振動 Lv10
		逐時變化圖2-48
릅	2.3-21	核四施工環境監測台2與縣102甲交叉口本季(8月份)
		噪音 Leq 逐時變化圖2-49
롭	2.3-22	核四施工環境監測台 2 與縣 102 甲交叉口本季(8月份)
		振動 Lv ₁₀ 逐時變化圖2-49
몹	2.3-23	核四施工環境監測鹽寮海濱公園本季(8月份)噪音 Leq
		逐時變化圖2-50
몹	2.3-24	核四施工環境監測鹽寮海濱公園本季(8月份)振動 Lv ₁₀
		逐時變化圖2-50
	2.3-25	核四施工環境監測福隆街上本季(8月份)噪音 Leq 逐時
		變化圖2-51
몹	2.3-26	核四施工環境監測福隆街上本季(8月份)振動 Lv ₁₀ 逐時
		變化圖2-51

昌	2.3-27	核四施工環境監測 102 縣道之新社橋本季(8 月份)噪音
		Leq 逐時變化圖2-52
昌	2.3-28	核四施工環境監測 102 縣道之新社橋本季(8月份)振動
		Lv ₁₀ 逐時變化圖2-52
昌	2.3-29	核四施工環境監測過港部落本季(8月份)噪音 Leq 逐時
		變化圖2-53
昌	2.3-30	核四施工環境監測過港部落本季(8月份)振動 Lv ₁₀ 逐時
		變化圖2-53
昌	2.3-31	核四施工環境監測台 2 與縣 102 甲交叉口本季(9月份)
		噪音 Leq 逐時變化圖2-54
昌	2.3-32	核四施工環境監測台 2 與縣 102 甲交叉口本季(9月份)
		振動 Lv ₁₀ 逐時變化圖2-54
롭	2.3-33	核四施工環境監測鹽寮海濱公園本季(9月份)噪音 Leq
		逐時變化圖2-55
몹	2.3-34	核四施工環境監測鹽寮海濱公園本季(9月份)振動 Lv ₁₀
		逐時變化圖2-55
몹	2.3-35	核四施工環境監測福隆街上本季(9月份)噪音 Leq 逐時
		變化圖2-56
몹	2.3-36	核四施工環境監測福隆街上本季(9月份)振動 Lv ₁₀ 逐時
		變化圖2-56
8	2.3-37	核四施工環境監測 102 縣道之新社橋本季(9月份)噪音
		Leq 逐時變化圖2-57
	2.3-38	核四施工環境監測 102 縣道之新社橋本季(9月份)振動
		Lv ₁₀ 逐時變化圖2-57
	2.3-39	核四施工環境監測過港部落本季(9月份)噪音 Leq 逐時
		變化圖2-58
8	2.3-40	核四施工環境監測過港部落本季(9月份)振動 Lv10 逐時
		變化圖2-58
阊	2.4-1	核四施工環境監測台 2 省道組 102 田縣道衣叉口木季非假

		日(88.6.28)交通量逐時變化圖2-63	3
昌	2.4-2	核四施工環境監測台 2 省道與 102 甲縣道交叉口本季假日	
		(88.6.27)交通量逐時變化圖2-63	3
昌	2.4-3	核四施工環境監測鹽寮海濱公園本季非假日(88.6.28)交通	
		量逐時變化圖2-64	4
昌	2.4-4	核四施工環境監測鹽寮海濱公園本季假日(88.6.27)交通量	
		逐時變化圖2-64	4
昌	2.4-5	核四施工環境監測福隆街上本季非假日(88.6.28)交通量逐	
		時變化圖2-65	5
昌	2.4-6	核四施工環境監測福隆街上本季假日(88.6.27)交通量逐時	
		變化圖2-65	5
롭	2.4-7	核四施工環境監測 102 縣道之新社橋本季非假日(88.7.5)	
		交通量逐時變化圖2-60	6
몹	2.4-8	核四施工環境監測 102 縣道之新社橋本季假日(88.7.4)交通	
		量逐時變化圖2-60	6
롭	2.4-9	核四施工環境監測過港部落本季非假日(88.7.5)交通量逐	
		時變化圖2-67	7
롭	2.4-10	核四施工環境監測過港部落本季假日(88.7.4)交通量逐時	
		變化圖2-67	7
몹	2.4-11	核四施工環境監測核四廠門口本季非假日(88.6.28)交通量	
		逐時變化圖2-68	8
昌	2.4-12	核四施工環境監測核四廠門口本季假日(88.6.27)交通量逐	
		時變化圖2-68	8
	2.4-13	核四施工環境監測台 2 省道與 102 甲縣道交叉口本季非假	
		日(88.7.20)交通量逐時變化圖2-69	9
묘	2.4-14	核四施工環境監測台 2 省道與 102 甲縣道交叉口本季假日	
		(88.7.31)交通量逐時變化圖2-69	9
畵	2.4-15	核四施工環境監測鹽寮海濱公園本季非假日(88.7.20)交通	

	量逐時變化圖2-7	70
E	2.4-16 核四施工環境監測鹽寮海濱公園本季假日(88.7.31)交通量	
	逐時變化圖2-7	70
昌	2.4-17 核四施工環境監測福隆街上本季非假日(88.7.20)交通量逐	
	時變化圖2-7	71
昌	2.4-18 核四施工環境監測福隆街上本季假日(88.7.31)交通量逐時	
	變化圖2-7	71
昌	2.4-19 核四施工環境監測 102 縣道之新社橋本季非假日(88.7.21)	
	交通量逐時變化圖2-7	72
昌	2.4-20 核四施工環境監測 102縣道之新社橋本季假日(88.8.1)交通	
	量逐時變化圖2-7	72
昌	2.4-21 核四施工環境監測過港部落本季非假日(88.7.21)交通量逐	
	時變化圖2-7	73
롭	2.4-22 核四施工環境監測過港部落本季假日(88.8.1)交通量逐時	
	變化圖2-7	73
롭	2.4-23 核四施工環境監測核四廠門口本季非假日(88.7.20)交通量	
	逐時變化圖2-7	74
昌	2.4-24 核四施工環境監測核四廠門口本季假日(88.7.31)交通量逐	
	時變化圖2-7	74
를	2.4-25 核四施工環境監測台 2 省道與 102 甲縣道交叉口本季非假	
	日(88.8.16)交通量逐時變化圖2-7	75
	2.4-26 核四施工環境監測台 2 省道與 102 甲縣道交叉口本季假日	
	(88.8.15)交通量逐時變化圖2-7	75
昌	2.4-27 核四施工環境監測鹽寮海濱公園本季非假日(88.8.16)交通	
	量逐時變化圖2-7	76
8	2.4-28 核四施工環境監測鹽寮海濱公園本季假日(88.8.15)交通量	
	逐時變化圖2-7	76
昌	2.4-29 核四施工環境監測福隆街上本季非假日(88.8.16)交通量逐	
	時變化圖2-7	77

昌	2.4-30	核四施工環境監測福隆街上本季假日(88.8.15)交通量逐時
		變化圖2-77
昌	2.4-31	核四施工環境監測 102 縣道之新社橋本季非假日(88.8.17)
		交通量逐時變化圖2-78
昌	2.4-32	核四施工環境監測 102 縣道之新社橋本季假日(88.8.14)交
		通量逐時變化圖2-78
昌	2.4-33	核四施工環境監測過港部落本季非假日(88.8.17)交通量逐
		時變化圖2-79
昌	2.4-34	核四施工環境監測過港部落本季假日(88.8.14)交通量逐時
		變化圖2-79
昌	2.4-35	核四施工環境監測核四廠門口本季非假日(88.8.16)交通量
		逐時變化圖2-80
昌	2.4-36	核四施工環境監測核四廠門口本季假日(88.8.15)交通量逐
		時變化圖2-80
몹	2.4-37	核四施工環境監測台2省道與102甲縣道交叉口本季非假
		日(88.9.13)交通量逐時變化圖2-81
昌	2.4-38	核四施工環境監測台2省道與102甲縣道交叉口本季假日
		(88.9.12)交通量逐時變化圖2-81
昌	2.4-39	核四施工環境監測鹽寮海濱公園本季非假日(88.9.13)交通
		量逐時變化圖2-82
몹	2.4-40	核四施工環境監測鹽寮海濱公園本季假日(88.9.12)交通量
		逐時變化圖2-82
몹	2.4-41	核四施工環境監測福隆街上本季非假日(88.9.13)交通量逐
		時變化圖2-83
몹	2.4-42	核四施工環境監測福隆街上本季假日(88.9.12)交通量逐時
		變化圖2-83
몹	2.4-43	核四施工環境監測 102 縣道之新社橋本季非假日(88.9.10)
		交通量逐時變化圖2-84
룹	2.4-44	核四施工環境監測 102 縣道之新社橋本季假日(88.9.10)交

		通量逐時變化圖2-84
昌	2.4-45	核四施工環境監測過港部落本季非假日(88.9.10)交通量逐
		時變化圖2-85
昌	2.4-46	核四施工環境監測過港部落本季假日(88.9.11)交通量逐時
		變化圖2-85
昌	2.4-47	核四施工環境監測核四廠門口本季非假日(88.9.13)交通量
		逐時變化圖2-86
昌	2.4-48	核四施工環境監測核四廠門口本季假日(88.9.12)交通量逐
		時變化圖2-86
昌	2.5-1	核四施工環境監測河川水文 88 年 7 月至 9 月水位變化圖 2-94
昌	2.8-1	核四施工環境監測地下水本季水位標高變化圖2-114
昌	2.8-2	核四施工環境監測地下水 88 年 7 月等水位線圖2-115
몹	2.8-3	核四施工環境監測地下水 88 年 8 月等水位線圖2-116
몹	2.8-4	核四施工環境監測地下水 88 年 9 月等水位線圖2-117
昌	2.9-1	核四廠(88 年 8 月)附近河川所出現之生物指標及其適存
		水域2-133
롭	2.11-1	核四施工環境監測海域生態植物性浮游生物各監測站之垂
		直分佈情形2-143
昌	2.11-2	核四施工環境監測海域生態動物性浮游生物個體量與生體
		量分佈關係2-143
몹	2.13-1	核四施工環境監測海象調查 88 年 7 月 29 日漂流浮標追蹤
		軌跡圖2-176
몹	2.13-2	核四施工環境監測海象調查 88 年 8 月 12 日漂流浮標追蹤
		軌跡圖2-177
몹	2.13-3	核四施工環境監測海象調查 88 年 9 月 28 日漂流浮標追蹤
		軌跡圖2-179
몹	2.13-4	核四施工環境監測海象調查沿岸水溫月平均變化圖(調查
		日期:83年10月至88年9月)2-180
루	2.15-1	核四施工環境監測海域漂砂採樣站累積百分比 50%粒徑

		資料圖(88年8月)2-202
	2.15-2	核四施工環境監測海域漂砂採樣站累積百分比 50%粒徑資
		料等值曲線圖(88 年 8 月)2-203
	3.1-1	核四施工環境監測歷次空氣品質總懸浮微粒最高 24 小時
		值比較分析圖3-12
昌	3.1-2	核四施工環境監測歷次空氣品質氮氧化物最高日平均值比
		較分析圖3-13
昌	3.1-3	核四施工環境監測歷次空氣品質氮氧化物最高小時值比較
		分析圖3-14
	3.1-4	核四施工環境監測歷次空氣品質二氧化氮最高日平均值比
		較分析圖3-15
	3.1-5	核四施工環境監測歷次空氣品質二氧化氮最高小時值比較
		分析圖3-16
昌	3.1-6	核四施工環境監測歷次空氣品質一氧化碳最高小時值比較
		分析圖3-17
를	3.1-7	核四施工環境監測歷次空氣品質一氧化碳最高八小時值比
		較分析圖3-18
를	3.1-8	核四施工環境監測歷次空氣品質非甲烷碳氫化物日平均值
		比較分析圖3-19
	3.1-9	核四施工環境監測歷次空氣品質非甲碳氫化合物最高小時
		值比較分析圖3-20
	3.1-10	核四施工環境監測歷次噪音 L 專非假日監測結果變化圖 3-29
롭	3.1-11	核四施工環境監測歷次噪音 L 型假日監測結果變化圖3-30
롭	3.1-12	核四施工環境監測歷次噪音 L □非假日監測結果變化圖 3-31
를	3.1-13	核四施工環境監測歷次噪音 L B 假日監測結果變化圖3-32
묘	3.1-14	核四施工環境監測歷次噪音 L * 非假日監測結果變化圖 3-33
F	3.1-15	核四施工環境監測歷次噪音 L ®假日監測結果變化圖3-34
묘	3.1-16	核四施工環境監測歷次噪音 L & 非假日監測結果變化圖 3-35
昌	3.1-17	核四施工環境監測歷次噪音工。網口監測結里變化圖3-36

昌	3.1-18	核四施工環境監測歷次振動 L ₁₀ (24 小時)假日監測結果
		變化圖3-38
	3.1-19	核四施工環境監測歷次振動 L ₁₀ (24 小時)非假日監測結
		果變化圖3-39
	3.1-20	核四施工環境監測各測站歷次非假日交通量監測結果3-42
	3.1-21	核四施工環境監測各測站歷次假日交通量監測結果3-43
	3.1-22	核四施工環境監測河川水質歷次調查溶氧量變化圖3-45
	3.1-23	核四施工環境監測河川水質歷次調查生化需氧量變化圖3-46
	3.1-24	核四施工環境監測河川水質歷次調查懸浮固體濃度變化圖 3-47
	3.1-25	核四施工環境監測河川水質歷次調查氨氮濃度變化圖3-48
	3.1-26	核四施工環境監測河川水質歷次調查導電度變化圖3-49
	3.1-27	核四施工環境監測河川水質歷次調查硝酸鹽氮濃度變化圖 3-50
	3.1-28	核四施工環境監測 GM1 及 GM10 監測井歷次地下水導電
		度監測結果3-64
	3.1-29	核四施工環境監測 GM1 及 GM10 監測井歷次地下水氯鹽
		監測結果3-64
	3.1-30	核四施工環境監測河川生態葉綠素甲歷次調查變化圖3-66
	3.1-31	核四施工環境監測河川生態附著性藻類歷次調查變化圖3-67
	3.1-32	核四施工環境監測河川生態浮游植物細胞密度歷次調查
		變化圖3-68
	3.1-33	核四施工環境監測河川生態浮游動物個體密度歷次調查
		變化圖3-70
	3.1-34	核四施工環境監測河川生態水生昆蟲歷次調查變化圖3-71
	3.1-35	核四環境監測河川生態魚類歷次調查變化圖3-72
	3.1-36	核四施工環境監測河川生態甲殼動物歷次調查變化圖3-74
	3.1-37	核四施工環境監測河川生態軟體動物變化圖3-75
	3.1-38	核四施工環境監測海域水質歷次調查懸浮固體濃度變化圖3-76
8	3.1-39	核四施工環境監測海域水質歷次調查生化需氧量變化圖3-77
묘	3.1-40	核四施工環境監測海域水質歷次調查大腸桿菌密度變化圖 3-78

昌	3.1-41	核四施工環境監測海域水質歷次調查濁度變化圖3-79
昌	3.1-42	核四施工環境監測海域生態葉綠素甲歷次調查變化圖3-81
昌	3.1-43	核四施工環境監測海域生態基礎生產力歷次調查變化圖3-83
昌	3.1-44	核四施工環境監測海域生態植物性浮游生物歷次調查細
		胞密度變化圖3-84
昌	3.1-45	核四施工環境監測海域生態動物性浮游生物歷次調查個
		體量變化圖3-86
昌	3.1-46	核四施工環境監測海域生態岩礁區魚類歷次調查種類數
		目變化圖3-88
몹	3.1-47	貢寮地區各類漁業標本戸之 CPUE(公斤/日/戸)一覽表3-90
몹	3.1-48	貢寮地區各類漁業標本戸之 IPUE(元/日/戸)一覽表3-91
몹	3.1-49	核四施工環境監測鹽寮海濱公園假日實際售票數與現場遊客
		調查數之比較圖3-94
昌	3.1-50	核四施工環境監測鹽寮海濱公園非假日實際售票數與現場遊
		客調查數之比較圖3-94
몹	3.1-51	核四施工環境監測福隆海水浴場假日實際售票數與現場遊客
		調查數之比較圖3-95
몹	3.1-52	核四施工環境監測福隆海水浴場非假日實際售票數與現場遊
		客調查數之比較圖

照片目錄

照片1.1-1	一號機廠房區廠基開挖作業1-2
照片1.1-2	二號機廠房區廠機開挖工程1-2
照片1.1-3	混凝土製造供應工程1-2
照片1.1-4	進水口防波堤及重件碼頭工程1-2
照片2-1	澳底國小空氣品質監測情形2-2
照片2-2	福隆街上噪音監測情形2-2
照片2-3	河域生態採樣作業情形2-2
照片2-4	岩礁區魚類潛水照相情形2-2
照片2.14-1	核四施工環境監測第一觀景點記錄照片2-185
照片2.14-2	核四施工環境監測第二觀景點記錄照片2-186
照片2.14-3	核四施工環境監測第三觀景點記錄照片2-187
照片2.14-4	核四施工環境監測第四觀景點記錄照片2-188
照片2.14-5	核四施工環境監測第五觀景點北向記錄照片2-189
照片2.14-6	核四施工環境監測第五觀景點西向記錄照片2-190
照片2.14-7	核四施工環境監測第五觀景點南向記錄照片2-191
照片2.14-8	核四施工環境監測第六觀景點記錄照片2-192
照片2.14-9	核四施工環境監測第七觀景點記錄照片2-193

核四環保監督委員會第二十八次會議委員對核能四廠發電工程施工期間環 境監測八十八年第一季季報意見及辦理情形(環境監測部分)

監督委員	審查意見	辦理情形
羅委員	1. 河川水質污染程度分析請依環保署八十七年公告方式表示,或用 RPI,同時比較上下游污染指標之差異性。WQI5、WQI8 方式之指標表示,以「年」作機率曲線圖,歷年資料可用盒狀統計圖表示之。	環保署八十七年公告方式表示,並以 RPI 分析其水質污染程度。
	2. 空氣監測請正確標明上下風口之 TSP 値,下年度能否增加 PM10、PM2.5 之 監測値,並能約束施工車、柴油車之油 品品質含硫量。	(1)將遵照委員意見加以標明。 (2)PM10、PM2.5 主要係對人體影響之指標,由於本地區目前總懸浮微粒多低於法規標準,對人體之影響應不大,故是否增加 PM10、PM2.5 項目本公司將再研究。施工車、柴油車之油品皆使用低硫油。
	3. 請就交通、噪音振動與施工機具關係等 討論之。	因簡報時間有限故未詳述,在環境監測 季報中有較詳盡之分析探討,未來簡報 時將加強此部分內容之探討。
林委員 永 德	環境監測項目未包括施工振動對魚類的 影響,其他地區於施工時,漁民已提出施 工振動影響漁撈業之訴求,請台電公司能 增加該監測項目,以明瞭影響範圍。	機具,因此無連續性高噪音振動音源,
黄委員 煌 煇	漂砂可能涉及日後地形變化而引起爭議,尤其目前進出水口尚未操作,日後地形與目前狀況必有差異,恐會引發抗爭,因此漂砂除了漂砂方向外,更需將各斷面沖淤狀況作深入之紀錄。	個斷面,每半年進行一次各斷面底質沖 淤量計算,以瞭解海岸地形之變化(詳

核四環保監督委員會第二十八次會議委員對核能四廠發電工程施工期間環境監測八十八年第一季季報意見及辦理情形(環境監測部分)(續一)

監督委員	審查意見	辦理情形
李委。地	1.水質監測中,施工區數處懸浮固體偏高,宜就施工區之施工作業妥予管理。	 本公司為於大方、政治、政治、政治、政治、政治、政治、政治、政治、政治、政治、政治、政治、政治、
	2. 放流水之污染量,宜列出該廢水中係何 種成分之污染與數量。	簡報中所述係指 BOD 之污染量,環境監測季報中有較詳盡之污染數量推估說明,請參照。
	3. 交通影響 B-D 之 PCU/日及 PCU/時之分級交通量服務水準宜列出,以明影響。	由於簡報時間有限故未詳述,環境監測 季報中均已列出,未來簡報時將加強此 部分內容之說明。
王委員小 璘	簡報資料中,對景觀點的美質評估應以量 化方法進行,並依此作出具體結論,例如 改善或影響幾個等級,並作成系統而完整 的報告(例如以連續攝影紀錄),該資料 將可作爲日後電廠環境持續監測比較之 依據。	評估方式,給予各觀景點 0~40 分與 低、中、高等三個等級,未來簡報時

核四環保監督委員會第二十八次會議委員對核能四廠發電工程施工期間環境監測八十八年第一季季報意見及辦理情形(環境監測部分)(續二)

監督委員	審查意見	辦理情形
鐘委員 福 松 (曾國基 先生代)	今年氣溫較往年來的高,相對地對海岸藻類、迴游性魚類等海洋生物之生態產生重大影響,宜於海域生態調查中詳細載明,以免造成日後資料分析之困擾。	温測量,並已於季報中列出以利監測結
郭委員 宏 亮	環境振動之標準是對人而言,對魚類影響 如何目前沒有詳細資料,如需要時應請台 電公司及農委會進行研究工作作爲依 據。	本項已屬研究發展之工作,且核四工程 均採用低噪音振動之施工法及機具,因 此並無連續性高振動源。本公司將蒐集 相關資料研究其可行性。
羅委員俊光	依全省河川水質變化之特性分析,雨季時 因雨水會沖刷地表之所有污染物,故初期 水質會較差,幾天後水質即會好轉。故建 議台電公司,監測時,區分為雨季和非雨 季之水質差異,以釐清台電公司之責任。	有詳加記錄,以供做為雨季和非雨季水 質差異之參考。
張委員 添 晉	1. 第二十八次簡報資料 P1-9 石碇溪廠界 之溶氧有誤,應予更正。	簡報中所示「.27」係為「8.27」之誤植, 已予以更正。
		該測站係於 1 月 12 日進行採樣,當時適 值連續降雨之後(環境監測季報中有採 樣時之氣候紀錄),致山區雨水夾帶大 量沖刷下來之泥沙而使懸浮固體濃度升 高。

核四環保監督委員會第二十八次會議委員對核能四廠發電工程施工期間環 境監測變更工作內容意見及辦理情形

監督委員	審查意見	辦理情形
郭委員宏 亮	噪音振動應與交通流量同時監測,以 便解析其相關性。	遵照辦理,變更後之噪音振動監測頻 率將為每月於平日及假日各執行一次 二十四小時連續監測,並同時進行交 通流量調查。
	變更後的監測方式似乎沒有原來的 好。	變更後之監測內容,於原有的監測項目與頻次均未減少反而增加,其增加的部分係依照環評報告之監測計畫內容進行補充調查,故工作內容只有多做沒有少做。至於變更後的監測方式與原監測方式均相同。
原委會環境科	由於台電公司簡報資料中變更工作內容對照表過於簡略,故容易造成誤解,請台電公司於下次會議資料答覆委員說明時,將變更前後之工作項目、頻次作詳細之對照說明,以便釐清,另請於變更後之監測季報中,將前述對照說明納入。	內容對照說明納入下一季環境監測季報中(變更內容對照表詳附表所示)

附表 核能四廠發電工程施工期間環境監測變更內容對照表

項目	環 評 報 告	原核四環境	修正核四環境
74 1	監 測 內 容	監 測 內 容	監 測 內 容
空氣品質	無空氣品質連續監測 站	無空氣品質連續監測 站	自 88/5 增加澳底及龍門兩處連續監測站
噪音振動	日或非假日),每次連	每兩個月進行二次(含 假日及非假日),每次 連續二十四小時監測	
交通流量	每兩個月進行四天(含 假日及非假日)連續監 測	每兩個月進行二次(含 假日及非假日),每次 連續二十四小時監測	自 88/6 改為每個月進 行二次(含假日及非假 日),每次連續二十四 小時監測
地下水	有懸浮固體項目	以濁度替代	自 88/6 同時測定濁度 及懸浮固體

核四環保監督委員會第二十八次會議委員對核能四廠發電工程施工期間歷 年海域生態監測分析報告意見及辦理情形(環境監測部分)

監督委員	審查意見	辦理情形
鐘委員 福 松	東北角管理處之海域調查工作自八十年迄今,已進行八年之久,過去所得物種總量的變化,因影響因素很多,並無法明確解釋其變化原因,故未來趨勢是找出經常性出現的指標生物,作爲環境監測的指標。建議爾後有關海域生態之監測,宜朝向建立鹽寮灣海域海洋生物指標種之施工前、施工中、施工後之變動比較。	調查結果,已可找出各生物類別經常性出現的指標生物(如浮游植物之矽藻、浮游動物的橈腳類、大型藻類之石蓴等)做為環境監測的指標,爾後可就指標生物施工前後之變動進行比較分析。
林委員 永 德	目包括環境因子和生物因子等,將 來如果環境因子之營養鹽減少,生 物因子之基礎生產力減少,何者為	前所進行之監測工作係屬施工期間之 海域生態調查,故範圍均在核能四廠 海域工程附近海域,惟針對整個東北 角海岸之生態環境,東北角管理處已 進行多年的調查並持續進行中,其調 查範圍較廣,故其調查成果應可做為 核能四廠環境監測成果比較及未來比 對之參考。
	並增加斷面水溫變化之測量,目前 監測均在出水口附近,當地大環境	本計畫海域水溫測點係於三貂灣海域水深 5 公尺至 60 公尺間,每隔 600公尺×600公尺或 1200公尺×1200公尺進行佈設,並測量水體縱深剖面之溫度變化情形,其涵蓋範圍已相當廣泛,應可確實掌握施工前之環境背景。
莊委員 文 思	1. 海域生態監測除整體種、量外,似 應擇定指標生物,以更明確瞭解當 地生態變化。	
	2. 珊瑚部分雖為海域生態監測項目之 一,但於本次報告內並未詳細說 明,似應加以補充。	監測項目中包含珊瑚調查,因已於上次監督委員會中專題報導,故於本次簡報中未詳細說明,請委員參考 27次監督委員會簡報資料及環境監測季報內容說明。

前言

1.依據

近幾年來,台灣地區的電力需求隨著工商業快速發展、人口持續成長、生活水準與國民所得不斷提高而逐年增加,電力供應常常因尖峰負載過大而呈現不足的現象。台灣電力股份有限公司為了解決國內電力需求日益迫切的情況,經過重新檢討電力系統長期負載預測及能源多元化的考慮,於核定的新電源開發方案中,選定在台北縣貢寮鄉的鹽寮地區設置第四核能發電廠。

台電公司依據民國 74 年 1 月行政院核備的「加強推動環境影響評估方案」,及民國 78 年 8 月行政院原子能委員會(以下簡稱原能會)「核能電廠環境影響評估作業要點」的規定,據以辦理核能四廠環境影響評估工作;評估作業歷經數次修正及補充後,該評估報告已在民國 80 年 12 月 30 日經原能會審查通過。台電公司為了達成核能四廠施工階段的各項環境監測工作及建立計畫區附近完整的背景環境資料庫,自 82 年 8 月起,依據評估報告相關內容與審查結論辦理「核能四廠發電工程施工期間環境監測工作」,目前由美商傑明工程顧問公司(以下簡稱傑明公司)負責辦理該項監測工作,藉以隨時掌握施工階段各項工程對環境品質產生之影響程度,以適時修正施工作業方式並採行相關減輕對策與保護措施,確保周圍環境品質。此外,經由環境背景資料之蒐集與分析,尚可建立長期性、連續環境監測系統,以符合環保追蹤管制之規定。

2.監測執行期間

核能四廠施工期間之環境監測工作預計進行八年,本監測工作已完成六年之監測作業,目前正進行八十八年第三季之監測作業,其執行期間係自民國 88 年 7 月 1 日至 88 年 9 月 30 日,共計三個月。調查監測之

結果將依合約規定提送季報告成果於規定時間內提送 貴單位審閱,並 提送行政院原子能委員會「核能四廠環境保護監督委員會」核備。

3.執行監測單位

本計畫監測工作監測項目包括氣象觀測、空氣品質監測、噪音與振動監測、交通流量監測、河川水文監測、河川水質監測、廠區放流水、地下水監測、河域生態監測、海域水質監測、海域生態監測、漁業調查、海象調查、景觀遊憩調查、海域漂砂調查及海岸地形調查等,共計 16 個項目;其中氣象、海象與河川水文監測工作係由台電公司電源勘測隊自行觀測調查,而漁業調查係由台電公司委託國立台灣海洋大學執行,其餘項目則由傑明公司負責規劃與辦理,並敦請國內著名之學者專家與顧問公司共同參與執行。有關本季監測工作各項目之辦理單位,詳如表一所示。

表一 核四廠施工環境監測各工作項目辦理單位一覽表

工作項目		負 責 辦 理 單 位				
	1.氣象觀測	台電公司電源勘測隊				
	2.海象調查	台電公司電源勘測隊				
	3.空氣品質監測	新紀工程顧問有限公司 (環保署認可之代檢業/許可證號053)				
	4.河川水文監測	台電公司電源勘測隊				
環	5.河川水質監測	中環科技事業股份有限公司(環保署認可之代檢 業/許可證號020)				
境	6.廠區放流水監測	中環科技事業股份有限公司(環保署認可之代檢業/許可證號020)				
調	7.海水水質監測	中環科技事業股份有限公司(環保署認可之代檢業/許可證號020)				
查	8.地下水監測	中環科技事業股份有限公司(環保署認可之代檢業/許可證號020)				
監	9.海岸地形調查	中山大學海洋環境學系薛憲文副教授				
測	10.噪音與振動監測	高雄醫學院盧天鴻副教授				
エ	11.河域生態監測	台灣大學動物系譚天錫教授				
作	12.海域生態監測	台灣大學動物系譚天錫教授				
	13.交通流量監測	高雄醫學院盧天鴻副教授				
	14.漁業調査	台電公司委託海洋大學漁業系辦理				
	15.海域漂沙調查	中山大學海洋環境學系李忠潘教授				
	16.景觀遊憩調查	傑明工程顧問股份有限公司				
監測	季 報 與 年 報 撰 寫	傑明工程顧問股份有限公司				

第一章 監測內容概述

1.1 工程進度

核能四廠廠區設施主要包括:冷凝水儲存槽、冷修配廠、開關廠、輔助鍋爐燃油槽、核廢料廠房、廢水處理廠、氣渦輪機廠房、放射性試驗室、倉庫區、生水池、永久倉庫、燃料廠房、圍阻體廠房、重車廠、輔機廠房、汽機廠房、廢料廠房及控制廠房,其它設施尚有工地辦公區、行政大樓、模擬中心、員工宿舍、氣象鐵塔、停車場、主要警衛室及大門等。

本季(88年7月至9月)核能四廠主要施工內容包括:龍門(核四)計畫第一、二號機廠房區廠基開挖工程(照片 1.1-1、照片 1.1-2)、龍門(核四)計畫第一、二號機核島區廠房結構工程、混凝土製造供應工程(照片 1.1-3)、核能四廠第一、二號機發電計畫循環水進水口防波堤及重件碼頭工程(照片 1.1-4)、核四廠綠帶第一期工程、施工用焚化爐設備安裝工程、施工用掩埋場滲出水處理設施工程、龍門(核四)計畫廠區綠化植栽養護工程...等;有關本季工程實際執行進度與執行情形,整理說明如表 1.1-1 所示,並將其施工區域標繪於圖 1.1-1。

照片 1.1-1 一號機廠房區廠基開挖作業

照片 1.1-2 二號機廠房區廠基開挖工程

照片 1.1-3 混凝土製造供應工程

照片 1.1-4 進水口防波堤及重件碼頭工程

表 1.1-1 核能四廠前期工程本季施工進度與執行情形一覽表(88年7~9月)

計畫名稱		預定進度表及實際執行進度(註1)		度(註1)	施工概況
		88年7月	88年8月	88年9月	加 工 城 次
	#1TB	-	100	-	TB 廠基開挖工作,目前施工現場除施工便道及爲保護岩盤面而須留置
		79	79	81	做為覆蓋用之區域外,餘均已開挖高程完成。
龍門(核四)計畫第一、 二號機廠房區廠基開挖	#2RB/CB	-			已於 88/7/17 完成,並由結構包承商進行 Lean Conc 澆置工作。
一號後順方與順至用化 工程		100			
	#2TB	-	97	-	TB 廠基開挖工作,目前施工現場除施工便道及爲保護岩盤面而須留置
	# 21 D	65	79	81	做為覆蓋用之區域外,餘均已開挖高程完成。
	第一號機	8.9	10	12	1.Basemat 第六、七澆置區澆置面清理。
	反應器廠房	8.9	9.5	9.6	2.Basemat 底層外牆混凝土修補。
	第一號機控制廠房	2.5	3.9	5.6	│ │1.永久排水系統主排水管溝蓋版澆置。
龍門(核四)計畫第 一、二號機核島區廠房		0.5	3.0	3.2	□1.水人排小术机工排小官用盖服烧直。
· 一號級多品與服房 結構工程	第二號機反 應器廠房	1.0	1.5	2.1	1.Basemat 第一、二澆置區混凝土澆置。
		1.0	1.5	2.1	2.永久排水系統南側主排水管敷底混凝土澆置。
	第二號機控制 制廠房	0	0.05	0.15	1.上層敷底混凝土澆置 ○
		0.02	0.05	0.15	2.永久排水系統主排水溝敷底混凝土澆置。
】 浪烙斗制造研座工程 <i>(</i>)	- ウ 024 聴)	NA	NA	NA	1.#1RB 、#2RB BASEMAT 混凝土澆置
	混凝土製造供應工程(土字 024 號)		NA	NA	2.向台北縣政府申請「操作許可證」。
核四廠綠帶第一期工程		89	89.7	91	1.苗木中耕除草、枝條修剪、施肥。
1次四侧冰市另一别工作		89	89.7	91	2.草坪修剪。
施工用掩埋場新建工程(施工用掩埋場新建工程(龍門水字第		100	100	1.不透水布、不織布舗設。
014號)		55	72	79	2.掩埋區整地夯實、粗砂舖夯。
核能四廠第一、二號機發電計畫循環 水進水口防波堤及重件碼頭工程(第 二分項)		12	15	20.7	1.北堤 0 ^K +100 ^m ~120 ^m 0.25 ^T ~0.5 ^T 塊石回填
		4	6.5	11.0	2.北堤 0 ^K +600 ^m ~150 ^m 0.25 ^T ~0.5 ^T 塊石回填 3.沈箱 NB2 底版鋼筋排紮 ○
	龍門(核四)計畫八十八年度廠區綠		76	87	廠區內已栽植樹木、花之養護修剪割草、中耕施肥、澆水及支架固
化植栽養護工程		70	76	87	定。

表 1.1-1 核能四廠前期工程本季施工進度與執行情形一覽表(88年7~9月)(續一)

計畫名稱		預定進度表及實際執行進度(註1)			施工概況
		88年7月	88年8月	88年9月	が世 工 11以 //に
施工用焚化爐設備安裝工程			90	100	88/9/13 竣工,目前辦理驗收作業程序及資料整理。
			90	100	88/3/13 竣工,日前栅连微拟作某性序及其材置连。
施工用掩埋場滲出水處理設施工程			30	40	各槽體已完成,待試水。
			30	40	百16股 二元 成,15成小。
龍門(核四)計畫第一、	一號機重件		5	5	1.已於 88/8/17 決標 ∘
搬運及吊裝工程			5	5	2.準備開工 ○
	第一、二期	90	100		一於 88/8/14 竣工。
┃ 龍門(核四)計畫#1~4	部分	95	100		川: 66/6/14 坂上 ♡
鋁造辦公室整修工程	第二期配電	72	100		- U aa a u t 10
	工程(電字 第026號)	72	100		
	並にz事 丁 チワ	-	47	70	1.倉庫(一)結構體完成○
	新建工程	-	47	70	2.倉庫(二)外牆貼磁磚完畢○
	配電工程	15	25	40	
龍門(核四)計畫冷氣 空 調 倉 庫(一) 、	(龍門電 #024號)	15	25	40	¬配合建築工程進度。
(二)新建工程	升降機工程		15	15.5	一 一施工說明書稿重新會各課審查中○
			15	15.5	加工就明音恒星和音音标番旦中 >
	空調系統工	8	10	12	 一施工說明書審核中 ○
	程	8	10	12	加巴工机的自由1次中、
臨時甲乙丙工房給水、空調、消防工 程		13.2	14	14.5	│ ⊣施工説明書文稿、設計圖面重新會各課審查中。
		13.2	14	14.5	加工机的自义师,故可画面重制自古林宙互介。
龍門(核四)計畫主洪排洪渠Ⅳ號主 渠道工程				12.5	 PC 澆置、底版基礎施作以及牆面鋼筋排紮及模板組立工作。
				12.5	~ /元巨 /心//从坐W://CTF /◇ / / / / / / / / / / / / / / / / / /
增設臨時消防栓箱工程				8	│ -施工說明書文稿、設計圖面送各課審查中。
				8	NOTENTAL OF THE BUTCH WHILE IT

表 1.1-1 核能四廠前期工程本季施工進度與執行情形一覽表(88年7~9月)(續二)

計畫名稱		預定進度表及實際執行進度(註1)			施工概況
		88年7月	88年8月	88年9月	他工版次
龍門(核四)計畫進水口區與鹽寮公 園地界多層次綠化工程		64	70	72	1.苗木澆水、施肥。
		64	74	76	
龍門(核四)計畫施工區通訊線路佈		100			│ ─本工程於 7/6 竣工。
設工程(龍門電#023號)		100			本工程// // // · // · // · // · // · // · //
龍門計畫臨時保警宿舍(一)新建工 程		100			 ─本工程於 7/21 完工。
		100			不工程》://21 JU工 *
	週邊景觀綠	96.8	97	97	│ │進行第二分項植栽養護階段。
龍門(核四)計畫臨時	化工程	96.8	97	97	E11第一刀块恒权民政阳权。
	排水溝蓋板	62	100		本工程自 88 年 5 月 20 日開工,已於 88 年 8 月 19 日竣工,目前正辦理
	舖設工程	68	100		工程結算及驗收中。
	出水隧道	35	60	70	│ ⊣鑽孔至 698.7 ^M 處,因地質狀況不佳,灌漿回填鑽孔至約 600 ^M 處。
龍門(核四)計畫循環		20	-	57	與打土 070.7 處,囚地負款///(TE,惟水回埃與扎土(Y) 000 處。
冷卻水地質調查工作	出水結構基 礎海域	20	53	75	
		25	53	72.2	□元次→元鎮环×721 十日 [[[]] [[]] [[] [[]] [[] [[]] [[] [[]] [[] [[]] [[] [[]] [[] [[]] [[] [[] [[]] [[]
	新建工程	23	40	53	│ │1~3 棟鋁架及屋頂樑架均已組合完成、磚牆均已砌築完成。
龍門(核四)計畫鋁造		24.5	40	53	1 3 体如木及座员保木均占加占九成。
臨時辦公室三期工程	配電工程	2	3	10	│ ─配合建築施工,目前完成接地埋設。
		2	3	10	16日建来加工,日间几次1926年改。
龍門(核四)計畫辦公廳區停車場新 建工程		70	100		│ - 於 88/8/9 竣工,8/25 上午 9:00 驗收。
		70	100		D. CO C D D X I D D I I D O M M T X ·
核三出水渠道、噴灑系統管路拆除、 維護工程		50	55	80	- 管路拆除、洩漏試驗、噴砂除銹、防蝕塗裝工作。
		50	55	80	
龍門(核四)計畫第三期鋁造辦公室 空調系統工程		15	15	15.5	-施工說明書稿重新會各課審查中 ○
		15	15	15.5	

註:1.表中各項工程之進度係以%表示,上行為預定進度,下行則為實際執行進度。

^{2.}資料來源:台電公司龍門施工處。

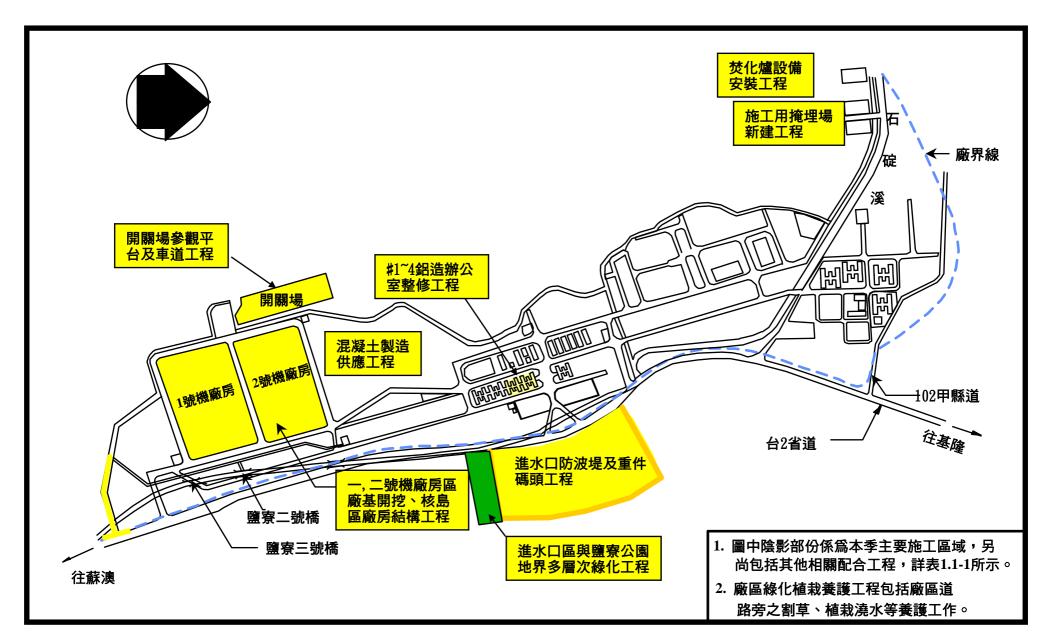


圖1.1-1 核能四廠前期工程本季施工區域位置圖

1.2 監測情形概述

本季環境調查監測工作係「核四施工環境監測」八十八年第三季之監測作業,其執行期間係自民國 88 年 7 月 1 日至 88 年 9 月 30 日,共計三個月,本季進行之監測項目包括:氣象觀測、空氣品質監測、噪音與振動監測、交通流量監測、河川水文監測、河川水質監測、廠區放流水監測、地下水監測、河域生態監測、海域水質監測、海域生態監測、漁業調查、海象調查、景觀遊憩調查及海域漂砂調查等 15 項。各監測項目之監測成果簡要列於表 1.2-1。

由於核四廠址三面環山,東側約 300 公尺即爲太平洋,因受地形屏障作用之利,根據核四廠過去三年施工期間環境監測年報與季報顯示,位於廠址西南側之貢寮及東南側的舊社、福隆等地受核四廠施工之影響不大;而其東北側之澳底與東側濱海地區則較有可能受到施工的影響;至於海域方面,進水口防波堤及重件碼頭地質鑽探工程,已於 85 年 9 月完成,因此對於海域水質與生態本季已無影響;而至於循環水進水口防波堤及重件碼頭工程已於 6 月份開始進行海上施工作業,故對海域環境可能會造成影響。有關本季核四廠施工作業是否對其周遭環境造成任何負面影響,將於第二章各節中分別予以說明。

1.3 監測計畫概述

本季進行之監測項目包括:氣象觀測、空氣品質監測、噪音與振動監測、交通流量監測、河川水文監測、河川水質監測、廠區放流水監測、地下水監測、河域生態監測、海域水質監測、海域生態監測、漁業調查、海象調查、景觀遊憩調查及海域漂砂調查等 15 項,其中空氣品質監測自 88 年 5 月起增加澳底及龍門兩處連續監測站;噪音振動及交通流量監測自 88

表 1.2-1 核四施工環境監測 88 年 7 月~9 月監測成果摘要表

監測類別	監測項目	監測結果摘要說明	因應對策
氣 象	風速、風向、氣溫、垂直氣溫差、 露點溫度及日照輻射(紫外線)	· 盛行風向受季節性變化影響,7~8月之高、低氣象塔以西北風風向為主,9月則以北北西風風向為主,其餘項目亦呈季節性變化。 · 大氣穩定度以中性(D)及微穩定(E)分佈機率最多。	_
空氣品質	總 懸 浮 微 粒 (TSP) 、 一 氧 化 碳 (CO) 、 氮氧化物(NOx) 、 非甲烷碳 氫化合物(NMHC)。	・本季各監測項目測値均符合空氣品質標準 (詳表2.2-5)。	_
噪 音 與 振 動	噪音:Leq(包括:小時Leq、L _₹ 、 L _∞ 、L ₈ 、L ₆ 、L ₈ 、)、Lx、Lmax。 振動:Lveq(包括:L ₈ 、L ₆)、 Lvx、Lvmax、Lv ₁₀ 。	· 本季之噪音值除102縣道之新社橋合乎環境音量標準外,其餘各測站多超出標準值,而各測站噪音值以台2省道與102甲縣道交叉口測站為高(詳表2.3-1~2.3-4)。 · 本季之振動值均符合日本振動規制法實施規則(詳表2.3-5~2.3-8)。	_
交通流量	交通流量	本季之交通流量以位於台2省道之測站測值較高,而以過港部落測站測值最低。台2省道的尖峰小時交通服務水準約介於B~D級,非省道旁之測站尖峰小時交通服務水準爲A級,並無惡化現象。	_
河川水文	水位、河川斷面積、流速、流量及 含砂量	·河川水位、流量呈季節性變化。 ·河川含砂量濃度與鄉公所於石碇溪及雙溪 上游進行河岸坡檻施作有關。	_
河川水質	溶氧量、導電度、pH値、生化需氧量、化學需氧量、懸浮固體、油脂、氨氮、重金屬(銅、鐵、鋅、鍋、鉻、汞、鎳)、硝酸鹽氮、磷酸鹽及雙溪河口、石碇溪河口之鹽度。		_
廠區放流水	水量、導電度、pH値、生化需氧量、懸浮固體、油脂。	· 本季僅宿舍區排水及鹽寮三號橋排洪渠道 懸浮固體測值(46.8~85.3 mg/L)未符合 87年放流水標準,其餘皆符合標準(詳表 2.7-1)。 · 核四廠區內之員工污水皆經化糞池處理達 放流標準後再予排放,其BOD5污染量僅 佔石碇溪背景污染量之7.7%,其對石碇溪 水質之影響尚屬環評預測增量10.58%範圍 內。	_
地下水	地下水水位及地下水水質(pH值、水溫、導電度、氯鹽、總硬度、鐵、錳、鉻、銅、鎘、鉛、汞、鋅、鎳、砷、硫酸鹽、硫化物、總有機碳、濁度、BOD、COD、NH ₃)及雙溪河口附近海水入侵監測。	·本區域歷次監測結果以GM1之導電度、氨 氮、化學需氧量及總有機碳及GM10導電 度氯鹽及總硬度濃度較高。由於GM1監測 井所在位置位於102甲縣道旁,於石碇溪 上游有養豬戸及住家分佈,故研判其污染 來源係為該養豬戸或家庭生活污水污染所 致,至於GM10監測井位於海邊,則可能 與海水入侵有關。	_

表 1.2-1 核四施工環境監測 88 年 7 月~9 月監測成果摘要表(續)

監測類別	監測項目	監測結果摘要說明	因應對策
河域生態	葉綠素甲、浮游植物、附著藻類、浮游動物、水生昆蟲、貝類、甲殼類、魚類。		-
海域水質	pH値、溶氧量、生化需氧量、大腸菌、懸浮固體、導電度、總磷、油脂、重金屬(鉛、鎘、銅、汞、鎂、鎳、鋅、鉻)、水溫及濁度。	 本季除一、四號測站之生化需氧量外,其餘各 測項皆符合海域甲類水體水質標準,詳表2.10- 1。 核四海事工程於7月份動工,惟各項測值均與 歷年之背景調查大致相同,濁度與懸浮固體並 未增加,對海域水質影響甚微。 	_
	(1)環境因子:營養鹽(亞硝酸鹽、硝酸鹽、矽酸鹽、磷酸鹽、矽酸鹽、磷酸鹽)、總磷、總氮、葉綠素甲。 (2)生物因子:基礎生產力、植物性及動物性浮游生物、大型藻類、底棲生物、珊瑚、魚類。		-
漁業	(1)問卷調查分析 (2)漁獲實地調查分析	·各類作業漁法因季節性而異,6-8月主要作業 漁法沿岸採捕為主,其次依序為燈火漁業、一 支釣、刺網漁業。 ·由於此時正值九孔新一季的養殖週期,所有的 養殖戸均剛放養九孔仔苗不久,尚未達到市場 販售的標準,所以皆無採收。	-
海象	海域溫度與鹽度縱深剖面調查、 漂流浮標追蹤調查、沿岸潮位及 水溫調查。	·海域溫度屬季節性變化。 ·本季漂流浮標追蹤調查結果,浮標大致上在漲 潮時往西北方向,退潮時往東南方向漂流。	-
景觀遊憩	(1)遊客人數實地調查 (2)觀光點門票分析 (3)設置景觀點,定期拍照並進行 自然完整性之評估	遊憩點之遊客人數因氣候逐漸回暖,天氣多為時朗之故,遊客人數有顯著增加情形。七個觀景點中以一及二號觀景點自然完整性較高,其餘三、四及五號觀景點屬中等自然完整性。	_
海域漂砂	漂砂粒徑分析、漂砂方向	·本區域主要砂源為雙溪河口,漂砂方向主要為 往北方向進行,在鹽寮海濱公園以北幾乎不受 砂源影響,在鹽寮公園以南水深10m以上亦不 受砂源影響,東南側影響則僅達挖子港東北 方。	_

年 6 月由原每二個月進行二天(含假日及非假日) 24 小時連續監測改為每個月進行二天(含假日及非假日) 24 小時連續監測;地下水監測則於 88 年 6 月增加濁度項目分析,變更內容詳表 1.3-1 所示。而本季之監測計畫則詳如表 1.3-2 所示。

表 1.3-1 核能四廠發電工程施工期間環境監測變更內容對照表

項目	環評報告監測內容	原核四環境 監測內容	修正核四環境 監測內容
空氣品質			自 88/5 增加澳底及龍門兩處連續監測站
 噪音振動	每個個月進行一次(假 日或非假日),每次連	每兩個月進行二次(含	自 88/6 改為每個月進 行二次(含假日及非假 日),每次連續二十四 小時監測
交通流量		假日及非假日),每次	自 88/6 改為每個月進 行二次(含假日及非假 日),每次連續二十四 小時監測
地下水	有懸浮固體項目	以濁度替代	自 88/6 同時測定濁度 及懸浮固體

表1.3-2 核四施工環境監測本季執行情形一覽表

調查監測 類 別	監測項目	監測地點	監測頻率	監測方法	執行單位	調查日期
	風速、風向、氣溫、垂直氣溫		採連續自動觀測。	以氣象觀測儀器及資料轉換		88年7月1日~88年9月30
	差、露點溫度及日照輻射(紫 外線)	2.高塔氣象塔		器(MTC)換算與數據化。	源勘測隊	日
空氣品質	總懸浮微粒(TSP)、一氧化碳			依據環保署公告之空氣檢測	新紀工程顧	(1)88年7月4日~24日
	(CO)、氮氧化物(NOx)、非甲	2.龍門社區(舊社)	續三天(含假日)監	方法辦理,詳附錄Ⅱ○	問有限公司	(2)88年8月8日~28日
	,		測∘			(3)88年9月1日~29日
		4.福隆海水浴場				
		5.川島養殖池				
		6.石碇宮				
		7.貢寮焚化廠入口旁民宅				
	噪音:Leq(包括:小時Leq、				高雄醫學院	(1)88年6月27日、28日
	$L_{\text{P}} \cdot L_{\text{m}} \cdot L_{\text{H}} \cdot L_{\text{c}} \cdot L_{\text{To}}$			音管制法及細則進行24小時		(2)88年7月4、5、20、
			假日)監測。	連續測定○		21、31日
	振動:Lveq(包括:L□、L			振動:採用相對人體感覺之		(3)88年8月1、14~17日
		5.102縣道之新社橋附近		振動位準方式監測。		(4)88年9月10~13日
交通流量		1.台2省道與102甲縣道交叉口			高雄醫學院	(1)88年6月27日、28日
		2.鹽寮海濱公園	二天連續24小時調查	I -		(2)88年7月4、5、20、
		3.福隆街上	(配合噪音與振動監			21、31日
			測同時進行)。			(3)88年8月1、14~17日
		5.102縣道之新社橋附近				(4)88年9月10~13日
河川水文	水位、河川斷面積、流速、流					88年7月1日~88年9月30
	量及含砂量	2.雙 溪:	時自動觀測○	位計監測。	源勘測隊	日
				(2)河川斷面積以測深桿測得		
		(2)明燈橋下游約300公尺處				
				(3)含砂量以DH-48採樣器採		
			二次。	集砂樣○		
				(4)流速以PRICE式流速計觀		
				測。		

表1.3-2 核四施工環境監測本季執行情形一覽表(續一)

調查監測 類 別	監測項目	監測地點	監測頻率	監測方法	執行單位	調查日期
	溶氧量、導電度、pH値、生化需氧量、化學需氧量、懸浮固體、油脂、氨氮、重金屬(銅、鐵、鋅、鎘、鉻、汞、鎳)、硝酸鹽氮、磷酸鹽及雙溪河口、石碇溪河口之鹽度。	(1)上游水文站 (2)石碇溪廠界 (3)澳底二號橋		依據環保署公告之水質檢驗 方法辦理,詳附錄 II 。	中環科技事 業股份有限 公司	(1)88年7月6日 (2)88年8月3日 (3)88年9月1日
廠區放流水	水量、導電度、pH値、生化需 氧量、懸浮固體、油脂。			依據環保署公告之水質檢驗 方法辦理,詳附錄 II 。	中環科技事 業股份有限 公司	(1)88年7月6日 (2)88年8月3日 (3)88年9月1日
地下水	地下水水位及地下水水質(pH值、水溫、導電度、氯鹽、總硬度、鐵、錳、鉻、銅、硫、鉛、汞、鋅、镍、砷、硫酸鹽、硫化物、總有機碳、濁度、BOD、COD、NH ₃)及雙溪河口附近海水入侵監測。	測井(廠區內5口,廠區外7口)	及GM14等三口監測	位深度。 (2)依據環保署公告之水質檢 驗方法辦理,詳附錄Ⅱ。	中環科技事 業股份有限 公司	1.水位: (1)7月:3、10、17、24、 31日 (2)8月:7、14、21、28日 (3)9月:4、11、18、25日 (4)GM6、GM10及 GM14:7月1日~9月30 日 2.水質: (1)7月:6~7日 (2)8月:3~4日 (3)9月:1~2日
河域生態	葉綠素甲、浮游植物、附著藻類、浮游動物、水生昆蟲、貝類、甲殼類、魚類。		各測站每二個月進行 一次採樣分析	詳附錄Ⅱ○	台灣大學動物系	88年8月28、29日

表1.3-2 核四施工環境監測本季執行情形一覽表(續二)

調查監測						
類 別	監測項目	監測地點	監測頻率	監測方法	執行單位	調查日期
海域水質	pH值、溶氧量、生化需氧量、				中環科技事	(1)88年7月6日
	大腸菌、懸浮固體、導電度、	監測站	採樣分析○	法辦理,詳附錄Ⅱ○	業股份有限	(2)88年8月4日
	總磷、油脂、重金屬(鉛、				公司	(3)88年9月1日
	鎘、銅、汞、鎂、鎳、鋅、					
	鉻)、水溫及濁度。					
海域生態	(1)環境因子:營養鹽(亞硝酸			詳附錄Ⅱ ○	台灣大學	(1)88年7月6日
		測站外,另於亞潮帶及外海			動物系	(2)88年8月4日
		設6處測站,共計10處監測				
	(2)生物因子:基礎生產力、植					
	物性及動物性浮游生物、大					
	型藻類、底棲生物、珊瑚、					
>6 MI == 1	魚類。					
漁業調査		調查範圍包括貢寮鄉沿海地	海洋大學專案研究	問卷調查及漁獲資料蒐集,	海洋大學	88年6月~88年8月
I	(2)漁獲實地調查分析	區。		詳附錄Ⅱ○	漁業系	
海象調查	海域溫度與鹽度縱深剖面調			(1)海域溫度與鹽度縱深剖面	台電公司	1.海域温度、鹽度及浮
	查、漂流浮標追蹤調查、沿岸		鹽剖面調查每月至		電源勘測隊	標漂流追蹤
	潮位及水溫調查 ○	3.固定水溫測站:鹽寮		(2)漂流浮標追蹤調查以雙葉		(1)7月:28、29日
			析。	浮標進行觀測,浮標流跡 NA CRESTA MEDICA		(2)8月:11、12日
			2.潮位、岸邊海溫採			(3)9月:27、28日
			連續自動觀測。	(3)潮位調查以潮位及水溫計		2.沿岸潮位及水溫:
FI ## 7// 4/6		1 目		自動記錄。	/bd 00 10 65	88年7月至9月
景觀遊憩	(1)遊客人數實地調查			(1)景觀美質調查以照相記錄		1.景觀美質
調查	(2)觀光點門票分析	核四廠址附近,選七個定點	日合一日之調登○ 	方式,藉由自然完整性評	問股份有限 公司	(1)88年7月6日
	(3)設置景觀點,定期拍照並進 行自然完整性之評估	2.避思・ (1)鹽寮海濱公園		│ 分方式進行評估。 (2)遊憩以現場遊客人數計數	公司	(2)88年8月3日 (3)88年9月1日
	1]日然无登住人計值	(1)鹽魚海須公園 (2)福隆海水浴場		[12] 遊忠以現場姓各人數計數 及蒐集遊憩區門票資料進		2.遊憩
		(3)龍門渡假中心		及鬼朱逃恕哩门宗貝科连 行分析 ○		2.遊恩 (1)88年7月17日、25日
		(3)月目 //支		117771N °		(2)88年8月7日、8日
						(3)88年9月4日、5日
海域漂砂	 漂砂粒徑分析、漂砂方向	 自澳底漁港北側至福隆海水	夕测计与禾钿木	CDC 字位,再以wm DCO 样	古山土趨海	88年8月19日
□ 海 ッ 湯 ッ 海 ッ 湯 ッ 湯 ッ 湯 ッ ラ ッ ラ ッ ラ ッ ラ ラ ・ ラ ・ ラ ・ ラ ・ ラ ・ ラ ・	凉炒似1至777 、凉炒刀 0 	日溪氐温港北側至幅隆海水 浴場附近之海域,設置20處			中山大學海 洋環境學系	00年6月17日
神 笙		冶场附近之海域,起直20處 測站;另於海灘設6處測站。		以林小岙林炒岙连打炒傢林 集 ○	尸 塚児字术	
		別44,力於/苺凝改0處測均○	風後進1」前軍 ♡	朱 [~]		

1.4 監測位址

本季監測項目包括空氣品質監測、噪音與振動監測、水質監測等等共計 16 項,各項監測項目之監測地點概述如下:

1. 氣象觀測(詳見圖 1.4-1)

氣象觀測工作係於台電公司既設之兩座氣象塔進行觀測,低塔氣象塔位 於石碇溪澳底第二號橋之西南側,高塔氣象塔則位在廠址南側之砲台山上。

2.空氣品質監測(詳見圖 1.4-2)

本項空氣品質監測係於廠址附近較敏感地區設置四處環境空氣品質 監測站,由北而南分別位於澳底國小、龍門社區、貢寮國小及福隆海水 浴場,另自84年1月起於核四廠址周界附近增設三處空氣品質測站,由 北而南分別爲川島養殖池、石碇宮及貢寮焚化廠入口旁之民宅。

3.噪音與振動監測(詳見圖 1.4-3)

於廠址附近交通要道或施工車輛進出之道路及敏感區,選擇四處監測站進行路邊地區噪音與振動監測(即進行交通噪音與振動監測),及一處一般地區噪音與振動監測,其中有三處測站地點經由監督委員會之建議,自84年7月起改爲位於石碇溪側,台二省道與海岸線間之過港部落(原監測站位於龍門活動中心前),102縣道之新社橋(原監測站位於 貢寮國小前)及福隆街上之電信局附近(原監測站位於 102縣道與台2省道之交叉口)。

4.交通流量監測(詳見圖 1.4-3)

交通流量監測位置係配合噪音與振動監測而設置於所鄰之道路旁,

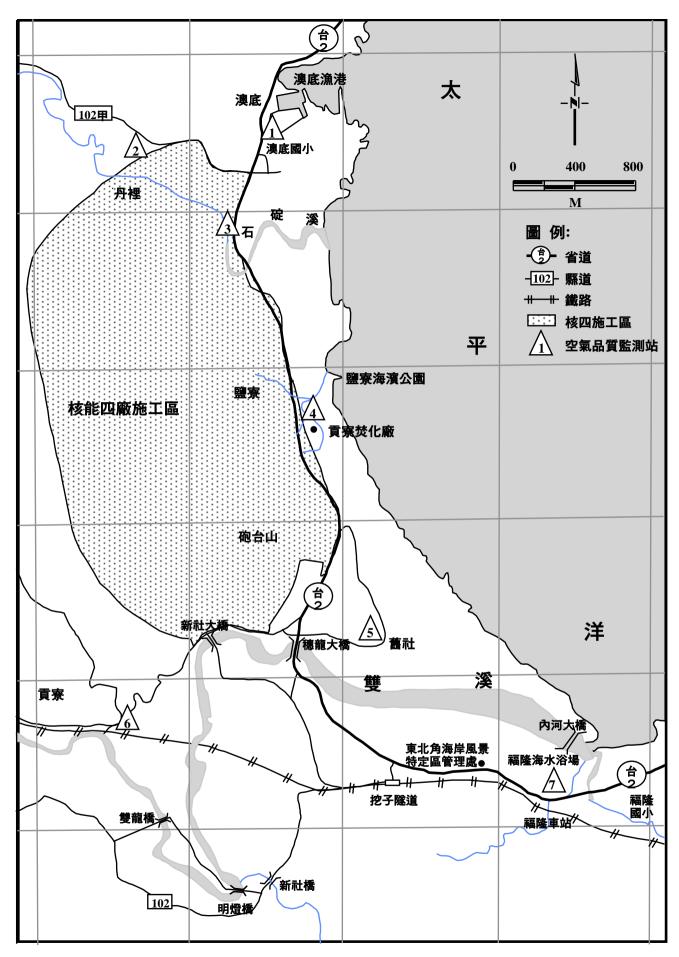


圖 1.4-2 核四施工環境監測空氣品質監測站位置圖

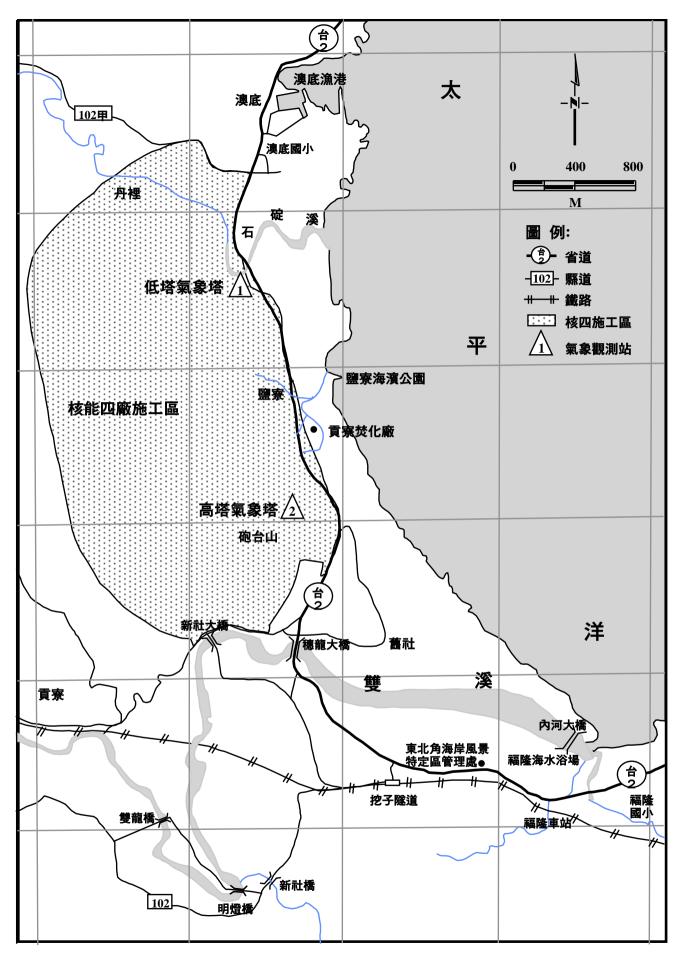


圖 1.4-1 核四施工環境監測氣象觀測站位置圖

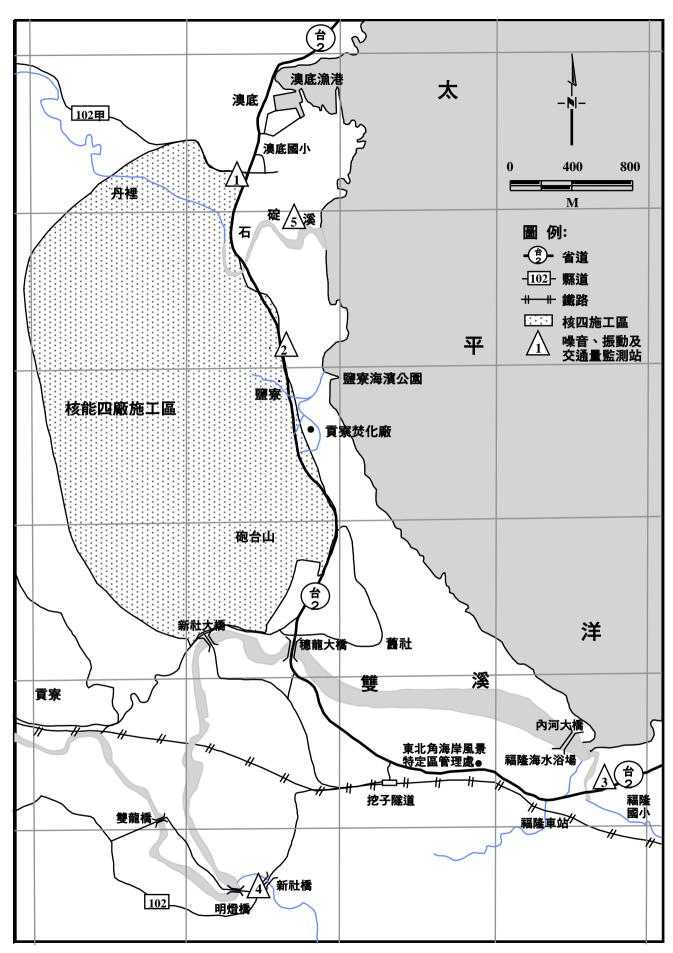


圖 1.4-3 核四施工環境監測噪音與振動及交通流量監測站位置圖

分別位於台2省道與102甲縣道交叉口、鹽寮海濱公園、福隆街上、102 縣道之新社橋及過港部落等五站,另外於核四廠大門口設置測站以瞭解 目前進出廠區之車輛數。

5. 河川水文監測(詳見圖 1.4-4)

- (1)石碇溪:石碇溪設測站一處,其位置在核能四廠廠址上游約600公尺處。
- (2)雙溪: ①雙溪一號測站位於貢寮國小附近。
 - ②雙溪二號測站位於新社橋與下雙溪之間,即約在明燈橋下游300公尺處。

6.河川水質監測(詳見圖 1.4-5)

- (1)石碇溪:核能四廠施工期間廠內各項廢污水主要係排放至石碇溪,故原於石碇溪上游水文站、下游(澳底第二號橋)及石碇溪河口附近各設置一處測站,而自85年10月起增設石碇溪廠界測站一處,共計四站。
- (2)雙溪:核能四廠之淡水水源係取自於雙溪溪水,其生水抽水站將設於 北迴鐵路與雙溪(即明燈橋與新社大橋之間河段)交會點附近,未來 抽水站施工將可能對雙溪之水質造成影響,故雙溪河川水質監測採樣 點乃於抽水站之上游(貢寮國小)與下游(新社大橋)各設一站,另 於雙溪河口附近設置一處採樣站,共計三站。

7.廠區放流水監測(詳見圖 1.4-5)

於85年10月起設置辦公區排水口(一)、辦公區排水口(二)、 宿舍區排水口及鹽寮三號橋排洪渠道等四站,另自86年8月起增設二號 排洪渠道及鹽寮三號橋排洪渠道等二站。

8. 地下水監測(詳見圖 1.4-6)

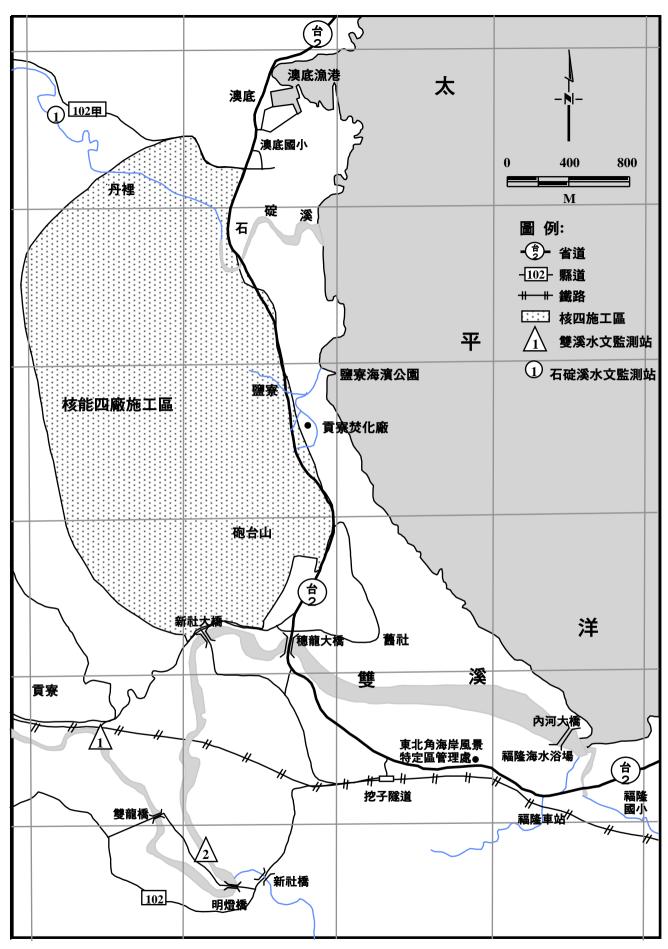


圖 1.4-4 核四施工環境監測河川水文監測站位置圖

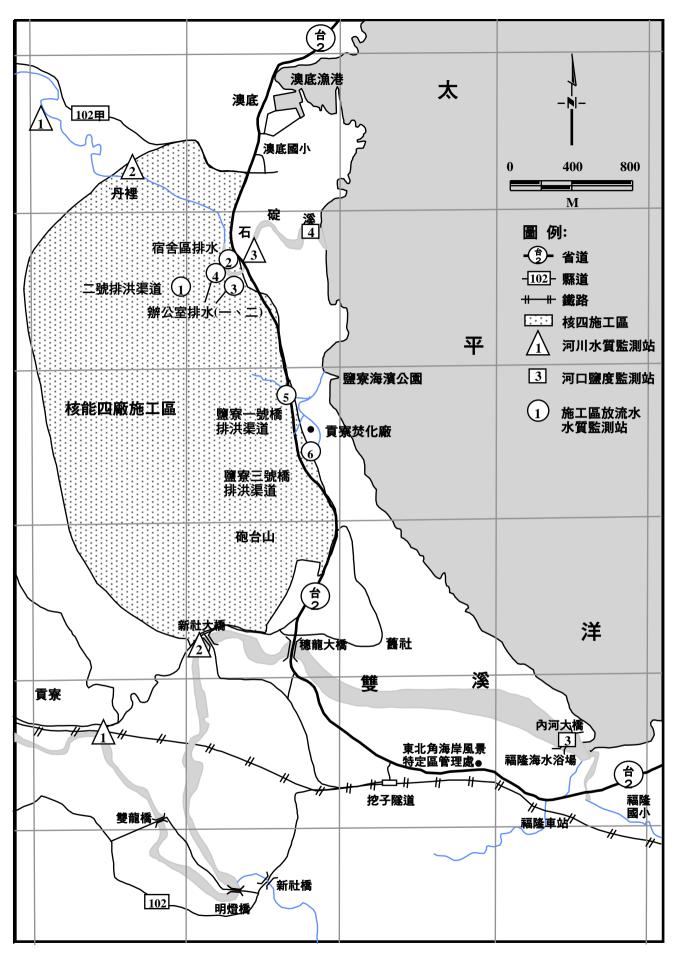


圖 1.4-5 核四施工環境監測河川水質及廠區放流水監測站位置圖

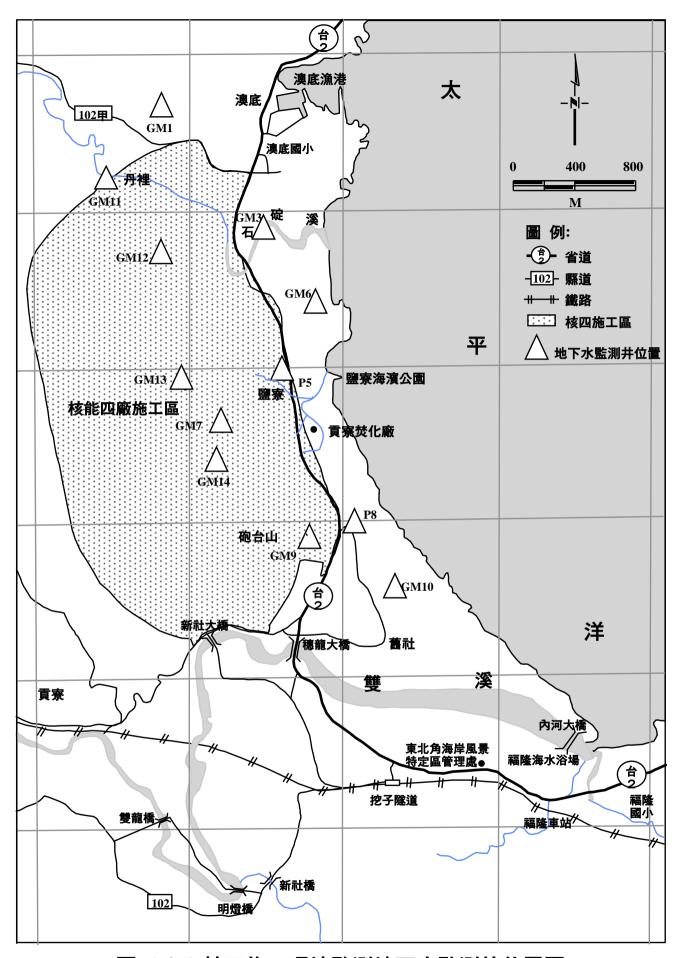


圖 1.4-6 核四施工環境監測地下水監測站位置圖

利用台電公司既設之地下水監測井,選定 12 口進行地下水水位與地下水水質監測工作,歷次監測之地下水監測井為 GM1、GM3、GM6、P5、P8、GM9、GM10、GM11、GM12、GM13、GM7 及 GM14等,其中 GM6、GM10 及 GM14等三口監測井之水位於 87 年 3 月起改為連續監測。另 GM11 監測井於 86 年 11 月進行維護性洗井過程中坍塌,改以 GM2 監測井作為替代井暫時進行監測,至 87 年 7 月新井(於 GM11 監測井原址附近)鑽鑿完成後始恢復水位與水質監測。

9.河川生態監測(詳見圖 1.4-7)

- (1)石碇溪:分別於上游水文站(一號測站)、澳底第二號橋(二號測站) 及石碇溪河口附近(三號測站)共設置三處採樣監測站。
- (2)雙 溪:分別在貢寮國小(一號測站)、新社大橋(二號測站)及雙 溪河口附近(三號測站)共設置三處採樣監測站。

10.海域水質監測(詳見圖 1.4-8)

海域水質監測之採樣點係於核四廠址沿岸海域受施工影響較敏感之地區選擇四處監測站,其中一號測站位在澳底漁港外海約300公尺處,二號測站位於石碇溪口與進水口附近,三號測站位在出水口附近,四號測站則位於雙溪河口外海約400公尺處。

11.海域生態監測(詳見圖 1.4-9)

於廠址沿岸十公里內之進出水口結構物施工範圍附近,共設置十處 海域生態測站(包括環境因子、基礎生產力、植物性浮游生物及動物性 浮游生物調查)及大型藻類、底棲無脊椎、珊瑚等調查各兩處,其中第1 ~4海域生態測站之位置與海域水質之四個測站完全相同。

12.漁業調查

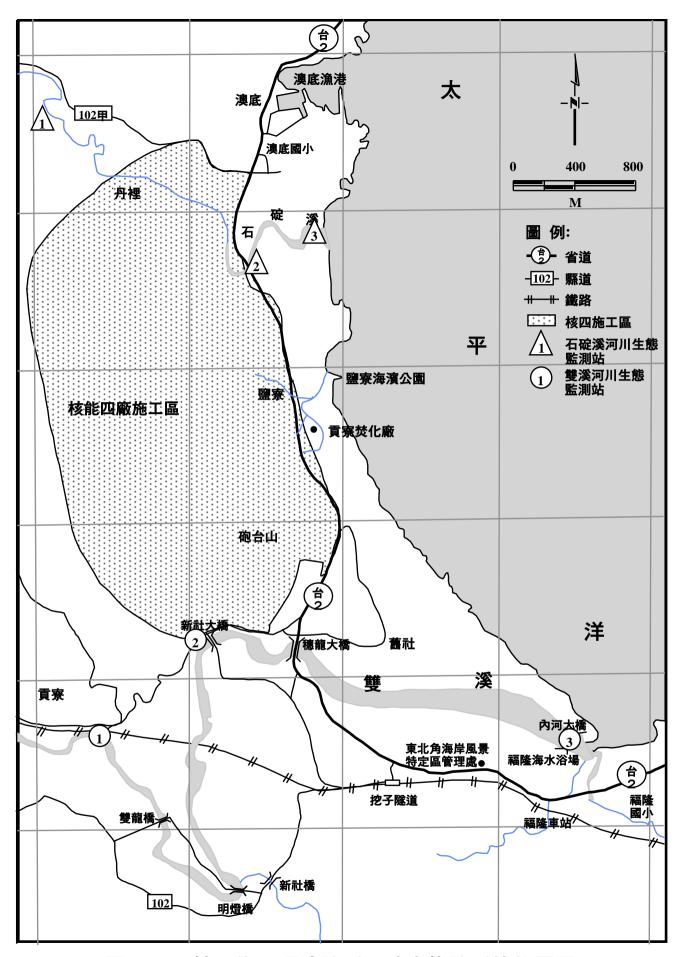


圖 1.4-7 核四施工環境監測河域生態監測站位置圖

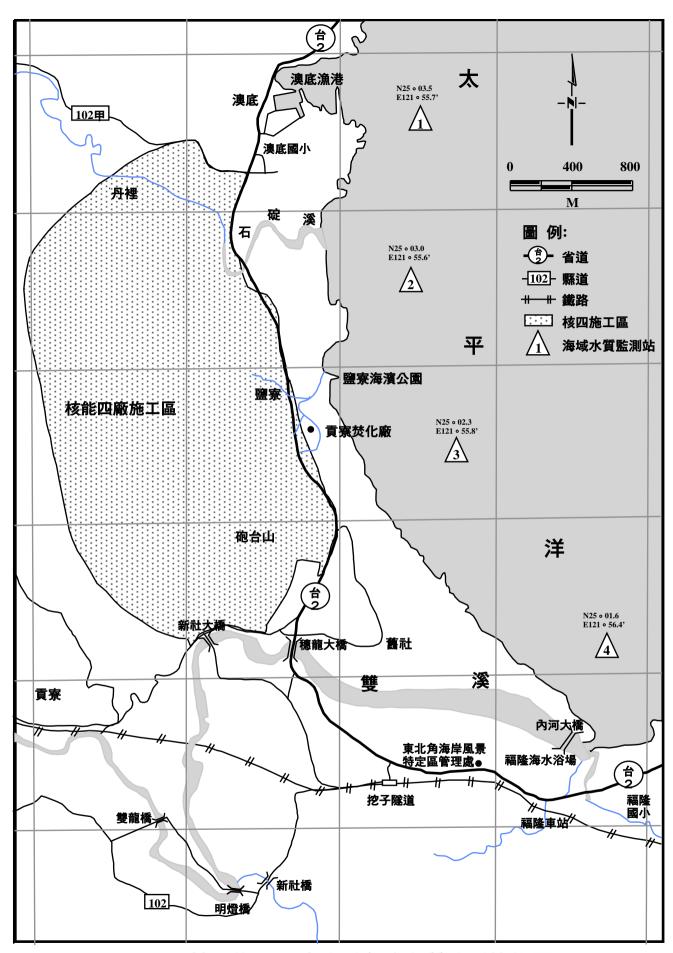


圖 1.4-8 核四施工環境監測海域水質監測站位置圖

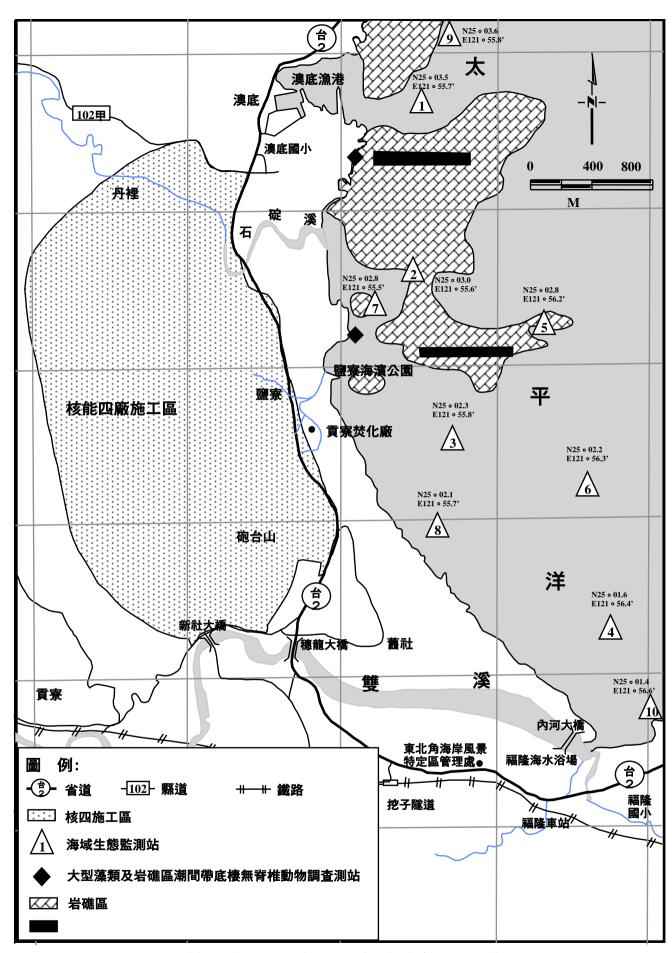


圖 1.4-9 核四施工環境監測海域生態監測站位置圖

以貢寮區漁會所管轄之龍洞、和美、美豔山、澳底、福隆、卯澳及 馬崗等 7 處漁港爲主要調查範圍。

13.海象調查(詳見圖 1.4-10)

海象調查工作係以核能四廠附近海域爲主要調查範圍,並於澳底漁港及 鹽寮海岸分別設置一處固定之潮位測站(澳底漁港)及水溫測站(鹽寮)。

14.景觀與遊憩活動調查(詳見圖 1.4-11)

遊憩使用量之調查係以福隆海水浴場、鹽寮海濱公園及龍門渡假中心等三處爲主要調查地點,而景觀品質調查之拍攝地點則是以台 2 省道及 102 甲縣道等鄰近核四廠址之路段爲主,其中在台 2 省道上有三個調查點,而 102 甲縣道有一個調查點,自 85 年 10 月起另增加 3 個景觀調查點,分別位於鹽寮海濱公園內近海邊處,福隆海水浴場及明燈橋上。

15.海域漂砂調查(詳見圖 1.4-12)

本項調查分爲海域採樣及海灘採樣,茲分述如下:

- (1)海域採樣:於鹽寮外海共選擇五個斷面,每個斷面各含四個採樣站(各 站間距離約 500 公尺),每個採樣站又分爲上、中、下以採水瓶取樣 及以採樣器進行底質採樣。
- (2)海灘採樣:由澳底漁港北側至雙溪河口共六個採樣點,每個採樣點均 於高低潮位各採取一樣品。

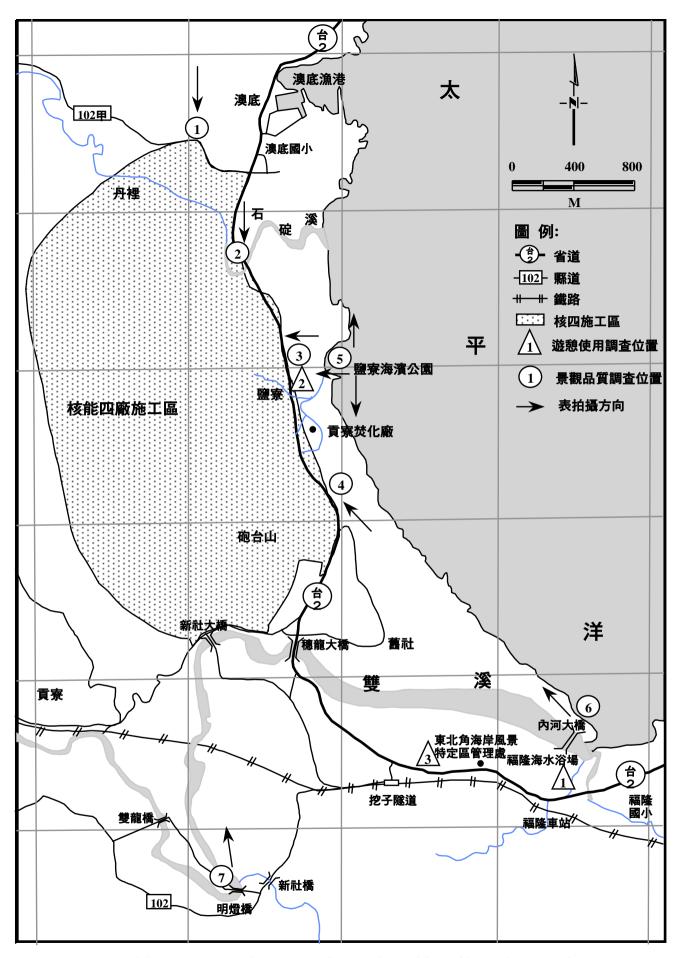


圖 1.4-11 核四施工環境監測景觀環境品質及遊憩使用調查位置圖

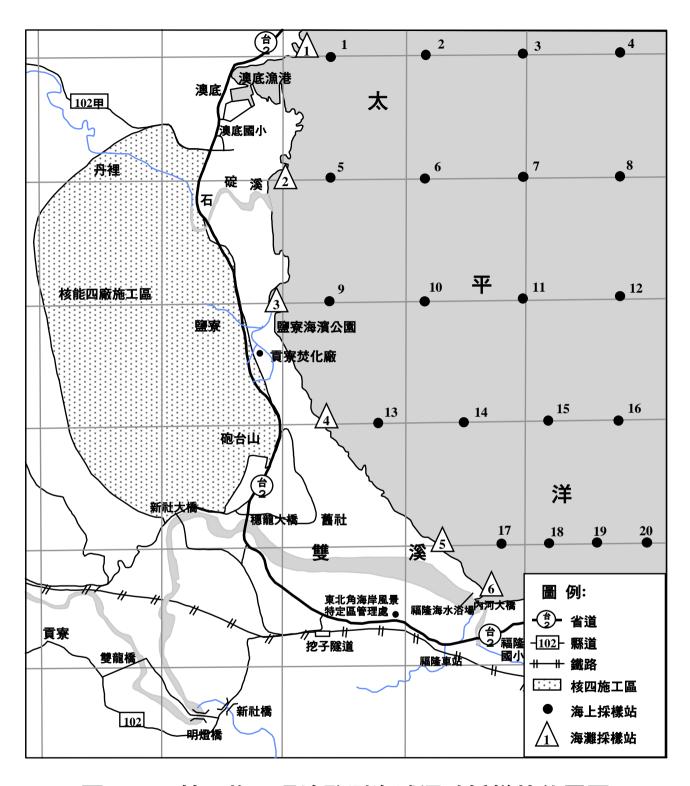


圖 1.4-12 核四施工環境監測海域漂砂採樣站位置圖

1.5 品保品管作業措施概要

1.現場採樣之品保/品管

(1)空氣品質方面:

①樣品採集及樣品輸送

根據標準操作程序之要求本次監測所規範之採樣工作及制定之採 樣流程乃依樣品之保存性質不同而採取不同品保執行要求,敘述如下:

高量採樣法中,濾紙於採樣及樣品輸送期間所受之保護爲品保工作 重點之一。於採樣時,須確實記錄高量採樣工作中之各項數據(如流量、 採集時間等),並於樣品之輸送過程中,確保濾紙樣品之完整性。濾紙樣 品破裂,若爲採樣期間,則重新採樣;若爲採樣結束,仍能完整收集碎片, 則乾燥稱重,否則重新採樣。

② 樣品之交接與轉登程序

採樣結束時,樣品由採樣人員攜回實驗室後,交與樣品管理員進行轉登錄工作,此時樣品管理員應確實檢視樣品是否完整,並隨時依突然(或不良)狀況之發生向主管報備。

②噪音/振動監測

- ①確認監測點。
- ②測定計校正。
- ③現場各工作記錄(校正)表填寫。
- 4 現場特殊狀況記錄。

③河川水質/廠區放流水/地下水/海水水質監測

- ① pH 計進行現場測試前之校正,並量測標準液記錄其結果。
- ②導電度計進行現場測試前之校正,並量測標準液記錄其結果。
- ③填寫現場測試結果表,以確實記錄樣品現場測量狀況
- 4)填寫樣品監控表,以確實掌控樣品數量。
- ⑤進行現場採樣重覆樣品採集,以明瞭樣品之代表性。
- ⑥準備旅運空白樣品與實際樣品同時進行分析,以掌握樣品運送是否 有污染狀況發生。

2.監測與分析工作之品保/品管措施

(1)空氣品質監測

空氣品質監測品管要求:

檢驗項目			品	管 要	求		
1双河双之只口	流量校正	測漏	零點校正	全幅校正	零點漂移	全幅漂移	臭氧流量
氮氧化物	0	\circ	0	0	\circ	0	\circ
非甲烷碳氫化 合物	0	\circ	0	0	0	0	-
一氧化碳	0	0	0	0	0	0	-
TSP	0	-	-	-	-	-	-

品管要求內容與管制範圍說明:

- ①表上所列「○」表示需做此項目品管要求,「-」則爲無需操作。
- ②流量校正需求管制標準:

A. 氮氧化物: 700±10% C.C./min。

B.非甲烷碳氫化合物: 100±10% C.C./min∘

C. - 氧化碳: 1±0.1 L/min∘

③測漏檢查管制標準:

- A.測定時必須 30 秒內停至零點。
- B.高量採樣流量壓力應爲定值。
- 4 零點校正需求管制標準:
 - A.氮氧化物,零點校正值需<20 ppb。
 - B. 一氧化碳: <1 ppm ∘
 - C.非甲烷碳氫化合物: < 0.01 ppm ∘
- 5全幅校正需求管制標準:

進行重覆二次之校正值,其相對誤差應<5%,且回收率<20 ppb。

- ⑥零點標移管制範圍:
 - A.氮氧化物、非甲烷碳氫化合物:零點漂移值需落於 ±20 ppb。
 - B. 一氧化碳:零點漂移值需落於 ±1 ppb ∘
- ⑦全幅漂移管制範圍:
 - A.氮氧化物:需小於全幅校正值 ±5%。
 - B. 一氧化碳、非甲烷碳氫化合物:需小於全幅校正值 ±2.5% ∘
- 8温度與濕度品管需求:

其準確度應至小數後一位,溫度誤差值為 ± 0.5 °C ,濕度誤差值為 $\pm 3\%$ 。

9 風速與風向品管需求:

其準確度應至小數後二位,風速誤差值爲±1%,風向誤差值爲±3%。

空氣品質監測品保目標:

指標値	精密度 (相對差異百分比)	準 確 性 分 析				完整	方 法
檢驗項目	(%)	品管樣品 (±%)	添加樣品	實驗室 空白分析	野外空白	性 (≧%)	偵測極限
TSP	10	15	-	-	<0.008g	95	14.9 $\mu g/m^3$
非甲烷碳氫化合 物	10	15	1	1	1	75	0.01 ppm
二氧化氮	10	15	-	-	-	75	1 ppb
一氧化碳	10	15	-	-	-	75	0.1 ppm

②噪音/振動監測

噪音/振動監測品保目標:

	指標值	精密度	準確性	生分 析	完整	方 法	
檢驗工	頁目	(相對差異百分比)	品管樣品	野外空白	性 (≧ %)	偵測極限	
噪音	Leq Lmax Ldn L 日 L 夜 L 早 L 晚 Lx(5,10,50,	±0.7dB	±1dB	-	75	0.1 dB	
振動	VL ₁₀ VL ₁₀ 日 VL ₁₀ 夜	±0.7dB	±1dB	-	75	0.1 dB	

③河川水質/廠區放流水/地下水/海水水質監測

①水質分析品管要求:

序 號	檢驗項目	檢量線製作	空白分析	重覆分析	查核樣品 分 析	添加標準品 分 析
1	水溫	-	-	\bigcirc	-	-
2	рН	-	-	\circ	-	-
3	導電度	-	-	\bigcirc	-	-
4	溶氧量	-	-	\bigcirc	-	-
5	大腸菌類密度	-	\bigcirc	\bigcirc	-	-
6	溶解固體	-	-	\bigcirc	\bigcirc	-
7	懸浮固體	-	-	\bigcirc	\bigcirc	-
8	氯鹽	-	\bigcirc	\bigcirc	-	-
9	生化需氧量	-	\bigcirc	\circ	\circ	-
10	硝酸鹽	\circ	\bigcirc	0	0	\bigcirc
11	亞硝酸鹽	\circ	\bigcirc	0	0	\bigcirc
	化學需氧量	-	\bigcirc	0	0	\bigcirc
13	總有機碳	\circ	\circ	\circ	0	\bigcirc
14	氨氮	\circ	\circ	\circ	0	\bigcirc
15	總凱氏氮	\circ	\bigcirc	0	0	\bigcirc
16	油脂	-	\circ	\circ	-	-
17	礦物性油脂	-	\bigcirc	0	-	-
18	酚類	\circ	\bigcirc	0	0	\bigcirc
19	有機磷劑	\circ	\bigcirc	\circ	\circ	\bigcirc
20	鋅,鎘,鉻,鉛,銅, 六價鉻	0	\bigcirc	\circ	0	\bigcirc
21	砷	\circ	\circ	0	0	\circ
22	汞	0	\bigcirc	0	\circ	\circ

註:查核樣品須使用外購之QC樣品或自行配製。

品管頻率及管制範圍說明如下:

①檢量線製作:每批次樣品應重新製作檢量線,並求其相關係數 r 値。

②空白分析:每10個樣品做一空白分析。

③重覆分析:每10個樣品做一個重覆分析,並求其差異百分比。

④查核樣品分析:每10個樣品做一個查核樣品分析,並求其回收率。

⑤添加標準品分析:每 10 個樣品做一個添加標準品於樣品之分析,並求其回收率。

②水質分析品保目標:

序 號	檢驗項目	檢驗方法	單位	偵測極限	重覆分析 差異百分比 (±%)	標準品分析 精確性 (%)	添加分析 精確性 (%)	完整性 (≧%)
1	水溫	攜帶式電子溫度計	°C	-	10	-	-	95
2	pН	攜帶式電子 pH 計	-	-	10	-	-	95
3	溶氧量	D.O.Meter 法/疊氮化物修 正法 NIEA W421.54C	mg/L	-	10	-	-	95
4	鹽度	攜帶式電子鹽度計	0/00	-	20	-	-	95
5	導電度	攜帶式電子導電度計	mmho/cm	-	10	-	-	95
6	大腸菌類密 度	NIEA E202.50T	CFU/100mL	-	20	-	-	95
7	懸浮固體	NIEA W210.50A	mg/L	4.0 mg/L	20	85~115	-	95
8	氯鹽	NIEA W406.50A	mg/L	2.0 mg/L	20	85~115	-	95
9	濁度	NIEA W219.50Y	NTU	0.050 NTU	20	-	-	95
10	HCO3 ⁻ ,CO3 ⁻²	АРНА 2320В	mg/L as CaCO3	-	15	-	-	95
11	硫酸鹽	NIEA W430.50A	mg/L	1.0 mg/L	20	80~120	75~125	95
12	磷酸鹽	NIEA W427.50A	mg/L	0.0050 mg/L	20	80~120	75~125	95
13	亞硝酸鹽	NIEA W427.50A	mg/L	0.0010 mg/L	20	90~110	75~125	95
14	總磷	NIEA W427.50A	mg/L	0.0050 mg/L	20	80~120	75~125	95
15	BOD	NIEA W510.50A	mg/L	1.0 mg/L	20	80~120	-	95
16	COD	NIEA W515.53A/ NIEA W516.52A	mg/L	2.0 mg/L	20	85~115 75~125	75~125 50~150	95
17	硝酸鹽氮	NIEA W417.50A	mg/L	0.050 mg/L	20	85~115	75~125	95
18	氨氮	NIEA W416.50T	mg/L	0.040 mg/L	20	85~115	75~125	95
19	總硬度	NIEA W208.50A	mg/L	3.0 mg/L	20	85~125	75~125	95
20	硫化物	NIEA W433.50A	mg/L	0.010 mg/L	20	80~120	75~125	95
21	油脂	NIEA W505.50A/ NIEA W506.20T	mg/L	2.0 mg/L	20	-	-	95
22	總有機碳	TOC 分析儀法	mg/L	0.10 mg/L	25	80~120	75~125	95
23	砷	NIEA W310.50A	mg/L	0.0060 mg/L	25	80~120	75~125	95
24	汞	NIEA W330.50A	μg/L	0.70 μg/L	30	75~125	70~130	95
25	鎂	APHA 3500-Mg	mg/L	0.010 mg/L	20	80~120	75~125	95
26	鐵	NIEA W206 50A	mg/L	0.0020 mg/L	20	85~115	75~125	95
27	鎳	NIEA W306.50A NIEA M104.00T/ NIEA W306.50A/	mg/L mg/L mg/L	0.10 mg/L 0.0080 mg/L 0.20 mg/L	20 20 20	90~110 85~115 90~110	75~125 75~125 75~125	95
		NIEA W104 00T/	μg/L	0.50 μ g/L	30	75~125	70~130	
28	錳	NIEA M104.00T/ NIEA W306.50A	mg/L mg/L	0.0020 mg/L 0.050 mg/L	20 20	85~115 90~110	75~125 75~125	95
29	鉛	NIEA M104.00T/ NIEA W306.50A/ NIEA W309.20A	mg/L mg/L μg/L	0.030 mg/L 0.20 mg/L 1.0 μg/L	20 20 30	85~115 90~110 75~125	75~125 75~125 70~130	95
30	鎘	NIEA M104.00T/ NIEA W306.50A/	mg/L mg/L	0.0040 mg/L 0.020 mg/L 0.50 μg/L	20 20 30	85~115 90~110	75~125 75~125	95
31	鉻	NIEA W309.20A NIEA M104.00T/ NIEA W306.50A/	μg/L mg/L mg/L	0.0040 mg/L 0.040 mg/L	20 20	75~125 85~115 90~110	70~130 75~125 75~125	95
		NIEA W309.20A NIEA M104.00T/	μg/L mg/L	0.10 μ g/L 0.0020 mg/L	30 20	75~125 85~115	70~130 75~125	73
32	銅	NIEA W306.50A/ NIEA W309.20A	mg/L μg/L	0.040 mg/L 0.50 μg/L	20 30	90~110 75~125	75~125 70~130	95
33	鋅	NIEA M104.00T/ NIEA W306.50A/ NIEA W309.20A	mg/L mg/L μ g/L	0.0020 mg/L 0.010 mg/L 0.50 μg/L	20 20 30	85~115 90~110 75~125	75~125 75~125 70~130	95
34	水量	NIEA W020.50T/ NIEA W022.50T	m ³ /sec	-	-	-	-	95

3. 儀器維修校正項目及頻率

各類監測所使用主要儀器設備之維修校正項目及頻率說明如下:

(1)空氣品質監測

儀器/設備	測試項目		頻	率	一般程度或注意事項
			每工	作日	流量 1400 L/min
高量空氣 採 樣 器	校	正	每	月	流量 800~1800 L/min 多點校正
	維	護	每工	作日	保護器內清潔
動態稀釋 校 正 器	校	正	每	月	質量流量多點校正 Air:1000~8500 CC/min Gas:8~90 CC/min
	t 六	.T.	每工	作日	Zero's Span 標準氣體校正
空氣品質 監 測 器	校	正	每	年	標準氣體多點校正
	維	護	每工	作日	管路清潔 , 濾紙及除濕劑更換

②噪音/振動監測

儀器/設備	測試	項目	頻	率	一般程度或注意事項
	校	田	每	年	送至國家標準實驗室校正
噪 音 計/ 振 動 計	查	核		欠 或 每月	靜音室中以標準音源作精確度查核校正
	維	護	每	月	1.功能測試 2.麥克風維護
電腦數據 蒐集儀	校	正	每	月	以電壓產生器與精密電表作精確度與準確性校正,並繪製檢量線 R 值>0.95
標準音源	校	正	每	年	送至國家標準實驗室校正

③河川水質/廠區放流水/地下水/海水水質監測

儀器/設備	校正項目	頻率	校 正 動 作	負責人	
	電導度測試	每日一次	取進流水,RO 出水,超純出水分析。	值週員	
純 水 機	濾心樹脂	視水質而定	自行更換,並登記。	邱炳華	
	RO濾 心		自行更換,並登記。	邱炳華	
pH 計	pH 值	每日一次	以標準緩衝溶液校正並記錄○	使用人	
天 平	點 校 正 每日或每次 使用前		參考前述校正步驟並記錄之。 	使用人	
	氣 體	每次使用前			
	燃 燒 頭	每次使用前	是否清潔,無堵塞。		
	燈 源	每次使用前	能量是否正確 ○		
	標準樣品 測 試	每次使用前	檢量線是否正確◇		
	光學部份	每年兩次	1.鏡片清潔保養 2.光徑、光柵、波長校正調整		
原子吸收 光 譜 儀	氣體燃燒 控制部份	每年兩次	1.燃燒頭調整器保養 2.氣體漏氣測試 3.霧化器細部分解 4.樣品預混氣清潔和檢查	使用人	
	電子電路部	每年兩次	1.光電倍增管,燈管高壓測試 2.電子電路板輸出測試 3.信號調整 4.相位電位測試		
	靜態系統 測 試	每年兩次	1.歸零穩定測試 2.吸收光板測試		
	標準樣品 測 試	則 試 母牛网次 上 郵元素規格測試			
可見光/紫外	零點校正	每次使用前	以空白試劑校正。	使用人	
光分光 光度計	波 長	半年一次	以標準波長玻片校正(登記於維修記錄卡)。	廠 商 (簡淑芬)	
濁度計	讀值校正	讀值校正 每次使用 以標準樣品測試,並以校正工具調整可變配		使用人	
	氣 體	每日或 每次使用前	純度及體積是否正確足夠。	住 田!	
氣 相 層	分離管柱	每次使用時	是否正確、完整。	使用人	
析儀	加熱系統	每次使用時	是否能正常作用。		
ाम । । । । । । । । । । । । । । । । । । ।	系統績效查 核(包含流量,溫度等)	一年一次	請維修廠商維修○	維修廠商 (邱炳華)	
	氣 體	每日或 每次使用前	純度及體積是否正確足夠。		
	分離管柱	每次使用時	是否正確、完整。	使用人	
氣相層析	加熱系統		是否能正常作用。	世用人	
質譜儀	T		是否能正常作用。		
見 明 俄	離子化裝置	每次使用時	是否乾淨/雜訊是否太高。		
	系統績效查 核(包含流 量,溫度等)	半年一次	請維修廠商維修○	維修廠商 (邱炳華)	

4.監測項目之檢測方法

(1)空氣品質監測

依據行政院環保署環境檢驗所的公告之周界測定法則中,公告空氣中粒狀污染物測定法-高量採樣法-(77)環署檢字第 07395 號及空氣中氮氧化物、一氧化碳及自動檢驗方法-(81)環署檢字第 43007 號公告。各空氣品質監測項目之監測方法與使用儀器說明如下:

監測項目	監測之方法與使用之監測儀器	方法偵 測極限	儀器偵測 極限	複分析差 異百分比 (±%)	添加回收 率(%)
1.總懸浮微粒(TSP)	高量採樣法(NIEA A102.10A); 高 量空氣採樣器 紀本公司 Model 122	14.9 μ g/m ³	$0.25 \; \mu \; g/m^3$	-	-
2.氮氧化物(NOx)	氮氧化物分析儀自動檢驗法(NOx ANALYZER/NIEA A417.10T「化學 激光法」); API 200		1ppb	1	-
3.非甲烷碳氫化合物 (NMHC)	「火焰離子燃燒檢知法」,紀本公司 Model 740 分析儀	0.01ppm	0.5ppb	-	-
4.一氧化碳(CO)	一氧化碳分析儀自動檢驗法(CO ANALYZER/NIEA A421.10T「紅外 光吸收光譜法」); DASIBI 3008	0.1ppm	1ppb	-	-
5.氣象	氣象監測設備自動測定(METEO EQUIPMENT); DANI 4000	-	-	-	-

②噪音/振動監測

噪音與振動之監測使用儀器及方法說明如下:

監測項目	分析方法與儀器設備	方法偵 測極限	儀器偵測 極限	複分析差 異百分比 (±%)	添加回收 率(%)
1.噪音	CNS No.7127-7129 規定之精密積 分噪音計(RION: SV-75), 參考 ISO、JIS A8305 方法。	0.1dB	-	-	-
2.振動	CNS No.7130 規定之振動位準計 (RION: VM-52A), 參考 ISO 2631、JIS Z8735 方法。	0.1dB	30dB	-	-

③河川水質/廠區放流水/地下水/海水水質監測

河川水質/廠區放流水/地下水/海水水質檢測使用主要儀器設備及各監測項目分析方法說明如下:

①檢測使用之主要儀器設備

序號	分析項目	檢 測 主 要 儀 器 設 備
1	水溫	攜帶式電子溫度計
2	pH 値	攜帶式電子 pH 計
3	溶氧量	D.O.meter/溶氧滴定裝置
4	鹽度	攜帶式電子鹽度計
5	導電度	攜帶式電子導電度計
6	透視度	透視度計
7	透明度	透明度板
8	生化需氧量	恆溫培養箱、溶氧測定裝置
9	化學需氧量	迴流、加熱裝置
10	懸浮固體/溶解固體	過濾裝置、乾燥箱
11	氯鹽	自動滴定裝置
12	砷	分光光度計 (UV:GBC 911)
13	氨氮/總凱氏氮	消化加溫器、蒸餾加熱裝置、分光光度計 (UV:GBC 911)
14	有機磷劑	氣相層析儀
15	硝酸鹽	水浴鍋、分光光度計 (UV:GBC 911)
16	亞硝酸鹽	分光光度計 (UV:GBC 911)
17	大腸菌類密度	高壓滅菌釜、恆溫培養箱
18	油脂/礦物性油脂	索氏萃取裝置、水浴鍋
19	酚類	分光光度計 (UV:GBC 911)
20	總有機碳	總有機碳測定儀
21	重金屬	萃取裝置設備、原子吸收光譜儀 (AA:PE M2380) / 感應耦合電漿原子發射光譜儀 (ICP:JY 50P)
22	汞	原子吸收光譜儀附汞測定裝置 (AA:PE M2380 / MHS-10)

②水質分析方法

分析方法主要依據行政院環保署所公告之方法,各監測項目之 方法說明如下:

序號	檢驗項目	分析方法	方法偵測 極 限	複分析差異 百分比(± %)	添加回收 率(%)
1	水溫	攜帶式電子溫度計法	-	10	
2	導電度	攜帶式電子導電度計法	-	10	-
3	鹽度	攜帶式電子鹽度計法	-	20	-
4	pH 値	攜帶式電子 pH 計法	-	10	-
5	溶氧量	溶氧測定儀法/碘定量之疊氮化物法(NIEA W421.54C)	-	10	-
6	水量	容器法(NIEA W020.50T)/流速計法(NIEA W022.50T)	-	-	-
7	濁度	濁度計法(NIEA W219.50T)	0.050NTU	20	-
8	懸浮固體	103°C~105°C乾燥法(NIEA W210.50A)	4.0mg/L	20	-
9	BOD	水中生化需量檢測方法(NIEA W510.50A)	1.0mg/L	20	_
10	磷酸鹽	維生素丙比色法(NIEA W427.50A)	0.0050mg/L	20	75~125
11	大 腸 菌 類 密度	滬膜法(NIEA E202.50T)	-	20	-
12	總磷	維生素丙比色法(NIEA W427.50A)	0.0050mg/L	20	75~125
	硝酸鹽氮	馬錢子鹼比色法(NIEA W417.50A)	0.0050mg/L	20	75~125
	硫酸鹽	濁度計法(NIEA W430.50A)	1.0mg/L	20	75~125
	亞硝酸鹽	分光光度計法(NIEA W418.50T)	0.0010mg/L	20	75~125
		重鉻酸鉀迴流法(NIEA W515.53A)/	2.0 7	20	75~125
	COD	重鉻酸鉀迴流法(含高鹵離子; NIEA W516.52A)	2.0mg/L	20	50~150
17	TOC	TOC 測定儀	0.10mg/L	25	75~150
18	硫化物	甲烯藍比色法(NIEA W433.50A)	0.010mg/L	20	75~125
19	總硬度	EDTA 滴定法(NIEA W208.50A)	3.0mg/L	20	75~125
20	氨氮	納氏比色法(NIEA W416.50T)	0.040mg/L	20	75~125
	油脂	萃取重量法(NIEA W505.50A)/直接萃取法(NIEA W506.20T)	2.0mg/L	20	-
22	鎂	原子吸收光譜法(APHA 3500-Mg)	0.010mg/L	20	75~125
23	砷	比色法(NIEA W301.50A)	0.0060mg/L	25	75~125
24	汞	冷蒸氣原子吸收光譜法(NIEA W330.50A)	0.70 μ g/L	30	70~130
		NIEA M104.00T/	0.030mg/L	20	75~125
25	鉛	NIEA W306.50A/	0.20mg/L	20	75~125
		NIEA W309.20A	1.0 μ g/L	30	70~130
		NIEA M104.00T/	0.0040mg/L	20	75~125
26	鎘	NIEA W306.50A/	0.020mg/L	20	75~125
		NIEA W309.20A	0.50 μ g/L	30	70~130
27	<i></i>	NIEA M104.00T/	0.0040mg/L	20	75~125
21	27 銘	NIEA W306.50A/	0.040mg/L 0.10 μ g/L	20 30	75~125 70~130
		NIEA W309.20A NIEA M104.00T/	0.10 μ g/L 0.0020mg/L	20	70~130 75~125
28	妇	NIEA W104.001/ NIEA W306.50A/	0.0020mg/L 0.040mg/L	20 20	75~125 75~125
20	28 銅	NIEA W300.30A/ NIEA W309.20A	0.040mg/L 0.50 μ g/L	30	75~125 70~130
		NIEA W309.20A NIEA M104.00T/	0.020mg/L	20	75~125
29	盆	NIEA W306.50A/	0.020mg/L 0.010mg/L	20	75~125 75~125
-	少 干	NIEA W309.20A	0.50 μ g/L	30	70~130
		NIEA M104.00T/	0.0080mg/L	20	75~125
30	鎳	NIEA W306.50A/	0.20mg/L	20	75~125
		NIEA W309.20A	0.50 μ g/L	30	70~130
21	ć ‡	NIEA M104.00T/	0.0020mg/L	20	75~125
31	鐵	NIEA W306.50A	0.10mg/L	20	75~125
32	孟	NIEA M104.00T/	0.0020mg/L	20	75~125
32	亚血	NIEA W306.50A	0.050mg/L	20	75~125

- 註:(1)NIEA 爲環保署公告檢驗方法。
 - (2) CNS 爲中華民國國家標準檢驗方法。
 - (3) JIS 爲日本國家標準檢驗方法。
 - (4) APHA 爲 Standard Methods 第 18 版檢驗方法。
 - (5)儀器偵測極限均低於方法偵測極限。

(4)交通流量監測

交通量監測方法;參考「交通量工程師手冊」、「台灣區公路容量手冊」之方法及準則進行交通量監測,監測時於各測站配置若干調查員,依來向、去向之車型類別:機車、小型車、大型車、及特種車(含拖車及貨櫃車等),車流量以電子攝影配合人工計數方式,對監測路段連續二十四小時(含假日及非假日)進行交通量監測。

5.數據處理原則

(1)空氣品質監測之有效測值定義:

氣狀污染物自動監測設施,其取樣及分析應在六分鐘之內完成一次循環,並應以一小時平均值作爲數據記錄值。其一小時平均值爲至少八個等時距數據之算術平均值。每日之有效小時記錄值,不得少於應測定時數之百分之七十五。粒狀污染物爲 24 小時連續採樣,記錄開始採集及採集終了之時間至分鐘數,每日之有效採集時間不得少於 22小時 48 分鐘(95%)。有效數字以儀器可讀之位數及單位,平均值採四捨五入進位方式。

②噪音及振動監測之測值定義:

噪音及振動之監測取樣時距皆為 1 秒,每小時取樣數據為 3600 組, 每小時數據完整性必須大於百分之八十(2880 組)才可視為有效小時記錄值,每日之有效小時記錄值,不得少於應測定時數百分之七十五(18 小時),其每日監測結果完整性計算依據如下:

完整性百分比 =
$$\frac{24$$
小時 - 無效小時記錄值 24 小時 ×100%

有效小時均能音量係採小時內取樣數據之對數平均值,有效小時

最大音量係採該小時內取樣數據之最大值(Lmax),有效位數至 dB 值小數點後一位,並採四捨五入進位方式。

③水質之分析測值處理原則:

① 樣品分析值爲偵測極限 3 倍以下時,分析結果均僅以一位有效數字報告,其餘數據按有效數字之認定原則規定處理。

有效數字處理原則:

- A.有效數字乃由正確數字後加一位未確定數所組成。
- B.有效數字相乘除之結果其有效數字以位數少的爲準(倍數除外)。
- C.有效數字相加減後其有效位數以正確數字加一位估計值爲準。
- D.經由吸光度換算的濃度,其有效位數以吸光度之有效位數爲準。
- ②分析結果若經由檢量線換算得知者,小於檢量線最低點時(不含零點),以小於最低點之濃度表示,若無吸光度則以 ND 表示,並註明其實驗室之方法偵測極限値。

第二章 監測結果數據分析

本季環境調查監測工作係「核四施工環境監測」第六年度第三季之監測作業,本季進行之監測項目包括:氣象觀測、空氣品質監測、噪音與振動監測、交通流量監測、河川水文監測、河川水質監測、廠區放流水、地下水監測、河域生態監測、海域水質監測、海域生態監測、漁業調查、海象調查、景觀遊憩調查及海域漂砂調查等 15 項,詳細之監測時程請參照第一章表 1.3-1 所示,其執行情形整理如照片 2-1~2-4 所示,以下茲就本季各項監測結果分析說明如后。

2.1 氣象觀測

1.風向與風速

兩座氣象塔之風向與風速均進行兩種不同高度之觀測,低塔氣象塔 之觀測高度分別爲標高63公尺及標高21公尺,高塔氣象塔則分別爲標高 93公尺及標高63公尺。

本季二座氣象塔之盛行風向與平均風速監測結果,經整理詳如表2.1-1 所示,但6月18日至9月15日間,高塔因受雷擊影響,以致無法進行監測。 而其逐時風向與風速月報表則列於附錄 IV.1-1~附錄 IV.1-8,依觀測結果 繪製之風花圖詳如圖2.1-1~圖2.1-2所示,風速風向聯合頻率分佈則列於 附錄 IV.1-9~附錄 IV.1-16,茲分別說明如後。

(1)低塔氣象塔

本季低塔63公尺及21公尺氣象塔所觀測之風向及風速監測結果,經整理統計詳如附錄Ⅳ.I-9~附錄Ⅳ.1-14及圖2.1-1~圖2.1-2所示。由

觀測結果可知,低塔63公尺氣象塔7月之盛行風向以西風風向爲主,其頻率爲12.37%;8月及9月之盛行風向分別以南風及東南風風向爲主,頻率分別爲13.44%及12.87%。低塔21公尺氣象塔7月及8月之盛行風向以西北風風向爲主,頻率分別爲16.40%及13.31%;9月之盛行風向以北北西風爲主,其頻率各爲15.82%。

本季7月至9月從低塔氣象塔觀測所得之平均風速,在低塔63公尺分別為2.5m/sec、2.8m/sec及4.2m/sec,而低塔21公尺則分別為2.0m/sec、2.2m/sec及2.9m/sec;由觀測結果可知,低塔63公尺因高程關係所觀測之風速略較低塔21公尺為高。大體而言,本季盛行風向以西風及西北風為主,而平均風速較上一季觀測值相差不大。

②高塔氣象塔

本季高塔93公尺及63公尺氣象塔所觀測之風向及風速監測結果,經整理統計詳如附錄 IV .1-15~IV .1-16及圖2.1-1~圖2.1-2所示。綜合觀測結果,高塔93公尺氣象塔9月之盛行風向爲北北西風,其頻率爲13.74%。高塔63公尺氣象塔9月之盛行風向爲北北西風,頻率爲12.99%。

本季9月從高塔氣象塔觀測所得之平均風速,在高塔93公尺為 4.6m/sec,而高塔63公尺則為3.6m/sec;由觀測結果可以看出,與低塔 氣象塔相同亦因高程之關係,高塔93公尺觀測所得之風速較高塔63公 尺為高。

2.氣溫、露點溫度與相對濕度

氣溫與露點溫度與相對濕度係於氣象低塔附近之氣象觀測坪進行 觀測,本季各月份逐日之平均氣溫、露點溫度與相對濕度,分別整理如 表2.1-2、表2.1-3及表2.1-4所示。本季7月至9月之月平均氣溫分別爲27.9 °C、27.8°C及26.4°C,月平均露點溫度則分別爲23.3°C、23.6°C及23.0°C;相對濕度則分別爲76.7%、78.7%及81.8%。

3.大氣穩定度(以垂直溫差推算)

大氣穩定度通常係以Pasquill穩定度分類法予以分類,其分類基準包括風向角標準差(動力因素)及垂直溫度梯度(熱力因素),詳見表2.1-5所示。依據本季低塔氣象塔(63公尺與21公尺)及高塔氣象塔(93公尺與63公尺)觀測之垂直溫差,再以Pasquill穩定度分類法計算其大氣穩定度機率分佈,結果詳如表2.1-6所示。

綜合本季低塔和高塔垂直溫差之觀測結果顯示,7月至9月之大氣穩定度多以E級(微穩定)及D級(中性)的分佈機率最大(E級約佔37.4%~47.84%左右,而D級約佔13.74%~30.11%左右),再其次則爲F級(中程度穩定),其分佈機率爲13.99%~20.70%。至於其他等級之機率分佈則較少。

4.日射量及紫外線輻射量

日射強度及紫外線輻射強度(波長介於290nm~385nm)係於氣象低塔附近之氣象觀測坪進行觀測,本季各月份各時段之觀測結果整理如表2.1-7和表2.1-8。於日射量之統計方面,本季7月至9月日累積量之月平均值分別爲367.4cal/cm²、432.8cal/cm²及328.8cal/cm²,7月至9月之日累積最大值發生於7月31日之612.4cal/cm²;而7月至9月之紫外線輻射量方面,日累積量之月平均值分別爲11.60mcal/cm²、12.97mcal/cm²及9.93mcal/cm²,7月至9月之日累積最大值則發生於7月31日之18.50mcal/cm²;最大日射強度及紫外線輻射強度多發生於上午11時至下午2時之間,晚間8時至翌日早上5時因無太陽照射,其日射量及紫外線輻射量均爲0.0cal/cm²。

2.2 空氣品質

本季(88 年 7~9 月)空氣品質監測工作各測站進行監測之日期詳見表 2.2-1,各測站空氣污染物逐時監測結果及監測車周界採樣儀器校正紀錄表 列於附錄 III 及附錄 IV ,各空氣污染物之監測綜合結果則整理於表 2.2-2~ 2.2-6,並繪如圖 2.2-1~2.2-9 所示。

本季 9 月份執行之監測工作,於貢寮焚化廠入口旁之民宅測站與貢寮國小測站,進行一組二站同時平行監測比較,但因 9 月 21 日地震影響,貢寮鄉部分地區停電,貢寮焚化廠入口旁之民宅測站、貢寮國小測站及石碇宮測站部分時段無調查測值,福隆海水浴場測站則監測工作暫停,詳見表2.2-6 監測綜合結果表。

另自88年5月起台灣電力公司於龍門及澳底各設置空氣品質連續監測站,綜觀本季連續監測站空氣污染物之監測綜合結果(詳見表 2.2-3),與本季龍門社區測站及澳底國小測站測得結果,並無明顯差異。

1.台電公司連續監測空氣品質測站監測結果

(1)懸浮微粒

本季龍門及澳底連續監測空氣品質測站懸浮微粒最大日平均值及小時最大值,龍門測站最大日平均值介於 $57.9 \sim 72.6 \,\mu$ g/m³ 之間,小時最大值介於 $99.3 \sim 171.0 \,\mu$ g/m³ 之間,澳底測站最大日平均值介於 $72.9 \sim 88.0 \,\mu$ g/m³ 之間,小時最大值介於 $99.2 \sim 157.3 \,\mu$ g/m³ 之間,較上季之監測值爲低。

(2) 氛氧化物

本季龍門及澳底連續監測空氣品質測站氮氧化物最大日平均值及

最大小時平均值,龍門測站最大日平均值介於 12.5~14.0ppb 之間,最大小時平均值介於 22.9~31.3ppb 之間,澳底測站最大日平均值介於 18.0~28.6ppb 之間,最大小時平均值介於 42.9~104.2ppb 之間。

(3)二氧化氮

本季龍門及澳底連續監測空氣品質測站二氧化氮最大日平均值及最大小時平均值,龍門測站最高日值介於 6.9~8.2ppb 之間,最大小時平均值介於 141~20.3ppb 之間,澳底測站最大日平均值介於 9.6~12.3ppb 之間,最大小時平均值介於 22.1~26.2ppb 之間。

(4)一氧化碳

本季龍門及澳底連續監測空氣品質測站一氧化碳日平均值及小時最大值,龍門測站最高日值介於 0.4~0.5ppm 之間,小時最大值介於 0.5~0.8ppm 之間,澳底測站最高日值介於 0.4~0.5ppm 之間,小時最大值介於 0.6~5.3ppm 之間。

⑤非甲烷碳氫化合物

本季龍門及澳底連續監測空氣品質測站非甲烷碳氫化合物日平均值及小時最大值,龍門測站最高日值為 0.7ppm,小時最大值介於 1.3~1.6ppm 之間,澳底測站最高日值介於 0.2~0.4ppm 之間,小時最大值介於 1.2~3.9ppm 之間。

2. 環境空氣品質測站監測結果

(1)總懸浮微粒

本季空氣品質測站總懸浮微粒最高 24 小時測值(三日測值最高者,以下其它項目亦同)介於 $28\sim92\,\mu\,\mathrm{g/m}^3$ 之間,詳如圖 2.2-1 所示,本季

最高測值發生在 7 月份之石碇宮測站,測值達 $92 \, \mu \, g/m^3$,雖然台 二省道車流量大,偶有揚塵發生,但整體而言皆未超過法規標準限值 $250 \, \mu \, g/m^3 \, \circ$

線觀本季監測結果中,雖正值夏季氣候型態,但亦多有午後陣雨,對粒狀物產生機會相對減小,且無特殊污染原因,故而本季之總懸浮微粒測值均未超過法規標準限值 250 μ g/m³。

②氮氧化物

本季空氣品質測站氮氧化物最高日平均值及最高小時值如圖 2.2-2 及圖 2.2-3 所示,其測值分別介於 8~28ppb 及 13~76ppb 之間,最高日平均值以石碇宮測站 7月份測值最高,其最高日平均值為 28ppb,而最高小時平均值則爲石碇宮測站的 7月份測值最高,其值爲 76ppb。本季石碇宮測站的最高日平均值測值最高,其主要原因除緊臨台 2 線省道受交通車輛污染之外,且假日時遊客增加,車輛較多,另由附錄Ⅳ.2-55~Ⅳ.2-63 表之逐時監測結果變化趨勢得知,風向的改變亦會將附近台 2 線省道車輛之污染擴散,影響測值。

③二氧化氮

本季空氣品質測站二氧化氮最高日平均值及最高小時值如圖 2.2-4 所示及圖 2.2-5 所示,其測值分別介於 5~15ppb 及 13~44ppb 之間,本季最高日平均值則以石碇宮測站 7月份及 8月份之測值 15ppb 最高,另最高小時值以石碇宮測站 7月份之測值 44ppb 最高,整體而言以川島養殖池測站之測值最低。二氧化氮與氮氧化物監測結果類似,均遠低於二氧化氮空氣品質標準之限值 250ppb 以下。

(4)一氧化碳

本季空氣品質測站一氧化碳最高小時值如圖 2.2-6 所示,其測值介於 0.4~1.0ppm 之間,以 7 月份澳底國小測站之測值最高,但整體而言均遠低於空氣品質標準一氧化碳小時平均值 35ppm 之限值。一氧化碳最高八小時值如圖 2.2-7 所示,其測值介於 0.3~0.9ppm 之間,以 7 月份貢寮焚化廠入口旁之民宅測站之測值最高,但仍遠低於空氣品質標準一氧化碳八小時平均值 9ppm 之規定。

⑤非甲烷碳氫化合物

本季空氣品質測站非甲烷碳氫化合物最高日平均值及最高小時值 詳如圖 2.2-8 及圖 2.2-9 所示,其測值分別介於 0.23~0.46ppm 及 0.26~0.57ppm 之間,最高日平均值發生於 9 月份石碇宮測站,及最高小時值發生於 7 月份澳底國小測站及 9 月份石碇宮測站,不過整體而言均無特殊非甲烷類碳氫化合物之明顯影響。

2.3 噪音與振動監測

本季各測站於 7、8、9 月每月各進行一次(含非假日與假日)噪音與振動之調查監測,此外上季 6 月底、7 月初之測值因於上季季報中不及分析,故於本季中予以納入。各測站之逐時監測結果列於附錄 IV.3,綜合成果則分別整理如表 2.3-1~2.3-8,以下分別就噪音與振動之監測結果做說明,噪音將與「環境音量標準」比較,振動值因目前尚無管制標準,則暫時與「日本振動規制法實施規則」比較。

1.噪音監測結果分析

本 季 噪 音 各 測 站 Leq 逐 時 變 化 如 圖 2.3-1,3,5,7,9,11,13,15,17, 19,21,23,25,27,29,31,33,35,37,39 所示,以位於台 2 省道旁之台 2 省道與 102 甲縣道交叉口測站測值最高,各時段測值多在 70dB(A)以上,惟因 其屬第三類管制區,依測點所在位置緊臨8公尺(含)以上道路邊地區, 標 準 較 其 他 測 站 (第 二 類 管 制 區) 爲 高 , 故 反 而 較 少 出 現 不 符 環 境 音 量 標 準 之 情 形 。 鹽 寮 海 濱 公 園 測 站 之 6 月 份 之 L ఙ 測 値 未 符 合 標 準 ,7 月 份 則非假日 L 應、L 表及假日 L 表 未 符 合 管 制 標 準 ; 8 月 份 假 日 測 値 皆 未 符 合 管制標準,9月份則多符合管制標準。而福隆街上則以 L ® 及 L ® 未符合 標準之比例較高。本季監測與核四施工較有關的爲第一、二號機發電計 書 循 環 水 進 水 口 防 波 堤 及 重 件 碼 頭 工 程 與 第 一 、 二 號 機 廠 房 區 廠 基 開 挖 工程,其附近的鹽寮海濱公園測站本季噪音測值則未有增加的情形,由 於在夜間不施工的背景値亦超過標準値,故研判其噪音源主要爲省道之 交涌量,其與台2省道與102縣道交叉口測站及福降街上測站之噪音大 多由於來往頻繁之車輛所致。在非省道旁測站(102 縣道之新社橋、過 港部落)各月份監測値在非假日介於 44.7~64.1dB(A)之間,而假日則介 於 50.3~64.2dB(A)之間,其中過港部落測站 6、7、9 月份之 L 🛛 、 L 🖯 、 L · · · · L · · · 於 假 日 與 7 · · 9 月 份 非 假 日 測 值 均 未 符 合 其 所 在 管 制 區 (一 般 地 區第二類管制區)之環境音量標準;而102縣道之新社橋測站本季各月

份之監測値皆符合其所在管制區(第二類管制區緊臨 8 公尺(含)以上) 之環境音量標準。

2.振動監測結果分析

本季振動之 L_{10} 逐時變化如圖 2.3-2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40 所示,各測站之 L_{10} (日)、 L_{10} (夜)振動値介於 $30.1\sim43.5$ dB 之間,以省道旁測站(台2省道與 102 甲縣道交叉口、鹽寮海濱公園、福隆街上)之測値有略高於非省道旁測站(102 縣道之新社橋、過港部落)之測値的趨勢,惟各項測值均遠低於日本振動規制法實施規則之基準值。

3.施工作業對噪音及振動影響分析

目前核能四廠進行之主要施工內容包括:龍門(核四)計畫第一、二號機廠房區廠基開挖工程、龍門(核四)計畫第一、二號機核島區廠房結構工程、混凝土製造供應工程。根據監工報告資料顯示,目前工區內所使用之機具有吊車、卡車、水車、挖土機、推土機、壓路機、泵浦車、灑水庫、壓土機、拌合車等,經距離衰減及周界圍籬之阻隔作用,對周界之噪音振動品質影響已屬輕微。另針對施工車輛進出工區所造成之交通噪音評估結果,由於大型機具及車輛多停放於廠區內,現階段進出廠區者除少數工程車輛外,其餘爲核四員工上、下班之車輛,根據6、7、8、9月份監測結果,非假日分別爲1,136、1,372、896、612輛,假日爲797、1,187、573、386輛,九成以上爲機車及小型車,非假日進出核四車輛約佔台2省道交通量5%~9%左右,車輛噪音對環境音量之增量尚屬輕微。

2.4 交通流量監測

1.交通流量監測結果分析

本季各測站於 7、8、9月每月各進行一次(含非假日與假日)之交通流量調查,此外上季 6月底、7月初之測值因於上季季報中不及分析,故於本季中予以納入。,各測站之逐時監測結果列於附錄 IV.4,綜合成果則整理於表 2.4-1、2.4-2 並說明如下:本季交通流量最大值(以 P.C.U./日為基準)發生在 9月份假日台 2 省道與 102 甲縣道交叉口測站,交通量為 24,752.0P.C.U./日,其車輛組成以小型車 19,048 輛為最多,其次為特種車及大型車分別為 1,177 輛及 876 輛。

各測站各車種之交通流量逐時變化如圖 2.4-1~2.4-48 所示,本季省 道旁非假日之車流量大致集中在 8:00~19:00,假日之車流量亦集中在 12:00~19:00,非省道之車流量約集中在 8:00~19:00。在車種組成方面各 測站均以小型車為主要車種,各月份省道非假日時佔 65.8~77.8%,假日時高達 73.7~89.4%,非省道之新社橋與過港部落各月份非假日與假日佔 44.9~80.0%左右。至於第二多數車種,在省道旁測站非假日以特種車為 主(以砂石車為主),約佔 14.7%~21.7%左右,假日時則以大型車及特種 車居多,非省道旁測站則以機車為第二多之車種,約佔 16.7~55.1%。

本季對於進出核四廠之車輛所做之監測結果如表 2.4-1、2.4-2 所示,由於目前核四廠內主要之工程爲龍門(核四)計畫第一、二號機廠房區廠基開挖工程、循環水進水口防波堤重件碼頭工程北堤開挖、南堤岩面清理及一、二號機核島區廠房結構工程等,進出核四廠之車輛於 6、7月份非假日時以小型車及機車爲主,其次爲大型車及特種車,其總車輛數爲 1136、1372 輛、車流量爲 1,049.4P.C.U./日及 1,230.5P.C.U./日,而假日,進出車輛總計爲 797 及 1,187 輛,車流量爲 743.0P.C.U./日及 1,097.0P.C.U/日,8、9 月份非假日亦以小型車及機車爲主,大型車及

特種車共有 45 及 56 輛進出,車流量為 851P.C.U/日及 646.5P.C.U.

/日,而假日則 573 及 386 輛進出場區,大型車及特種車共有 17 及 18 輛進出,總計 573 及 386 輛,車流量為 507P.C.U/日及 375.0P.C.U/日。整體而言,非假日進出核四廠區車輛約佔台 2 省道交通量之 5%~9%左右,對於台 2 省道之交通影響尚屬輕微。

2.道路交通服務水準分析

評估道路系統服務品質之優劣,可藉由服務水準高低加以衡量,一般評估道路服務水準之指標常以道路交通流量(V)與道路服務流量(C)之比值(V/C)爲指標,並分爲 A、B、C、D、E 及 F 等六等級,如表2.4-3 所示,其中道路交通流量乃指單位時間內該道路通過之車流量(以小客車當量 P.C.U.計);至於道路服務流量乃指在現有道路及交通情況下,單位時間內該道路可容許之最大車流量,可由該道路之車道數、等級、所在區域及路基寬等特性,依表 2.4-4 得知其設計基本容量。

表 2.4-4~表 2.4-7 即爲依上述原則,計算本監測工作五個交通流量 測站本季監測當日最高小時交通流量之道路服務水準等級;由表可知,6 ~9 月份最高小時交通流量(P.C.U./H),省道旁三處測站之道路服務水 準於非假日時大多可維持在 B 至 C 級,假日時道路服務水準則爲 B 至 D 級;而非省道旁測站(102 縣道之新社橋及過港部落)之尖峰小時服務 水準則皆維持在 A 級,顯示目前交通品質大致良好。

2.5 河川水文監測

有關本季石碇溪與雙溪河川水位監測結果,分別整理如表2.5-1及表2.5-2 所示,至於河川橫斷面積、流速與流量之監測結果詳如表2.5-3,各測站之 水位變化則詳見圖2.5-1。本季監測結果分析說明如下:

1.河川水位

依據表2.5-1、表2.5-2及圖2.5-1之監測結果顯示,石碇溪測站本季7月、8月及9月之月平均河川水位分別為1.29公尺、1.17公尺及1.28公尺,雙溪一號測站分別為0.66公尺、0.57公尺及0.83公尺,而雙溪二號測站則分別為0.56公尺、0.48公尺及0.68公尺;依本季三個月之河川水位測值顯示,石碇溪及雙溪均以9月21日之水位最高,其次為9月27日,主要係受連續降雨影響所致。

2.河川流量

本季河川流量監測分別於7月8、14、27日、8月2、5、17、23日及9月1、7日進行,依據表2.5-3之監測結果顯示,石碇溪測站本季(7月至9月)之監測流量約介於0.019~0.151cms,以7月8日、7月27日及8月2日之河川流量較大;雙溪一號及雙溪二號之流量則介於0.619~2.734cms及0.164~2.097cms之間,兩測站均以7月8日及7月27日之河川流量較大。由於雙溪測站之流域面積及河川橫斷面均較石碇溪測站之流域面積及河川橫斷面為大,故雙溪之河川流量多較石碇溪之河川流量豐沛。

3.含砂量

依據表2.5-3之監測結果顯示,本季石碇溪測站於8月2日及8月23日 之含砂量測值分別為42與32ppm,其餘各測量值均為0ppm;而雙溪一號7 月至9月之含砂量測值介於29~77ppm,雙溪二號則介於27~100ppm之間。經調查結果,鄉公所於7月及8月於石碇溪和雙溪上游進行河岸坡檻 施作,以致本季兩溪之含砂量略微偏高。

2.6 河川水質監測

本季監測在雙溪及石碇溪共進行三次水質採樣及分析調查,採樣時間分別爲88年7月6日、8月3日及9月1日。其調查結果分別整理如表2.6-1至表2.6-3所示。

各類水體適用性質分類如表 2.6-4所示,由於目前法規尚未公告石碇溪及雙溪之水體分類,本報告乃依據行政院環境保護署 87年6月24日最新修正之「地面水體分類及水質標準」,探討石碇溪及雙溪之河川水質是否符合各類水體之水質標準。環保署新修正標準中,分爲保護生活環境及保護人體健康等二類基準,其中保護生活環境基準針對各水域類型訂定,而保護人體健康係全部公共水域一律適用(詳表 2.6-5~2.6-6),茲說明石碇溪及雙溪水質狀況如下。

1.石碇溪監測結果

- (1)上游水文站:本季三次水質採樣分析結果,7、9月之生化需氧量、7、 8月之溶氧量及9月之氨氮未達甲類陸域地面水體水質標準。由於本測 站位於核四廠址上游,故推測未符合甲類陸域地面水體水質標準主要 是受上游社區住戸生活污水及養豬廢水排放所影響,與本工區施工應 無直接關係。
- (2)石碇溪廠界:位於廠區周界之石碇溪廠界測站本季三次水質採樣結果,以7、8月生化需氧量及9月氨氮測值有逾越甲類水體水質標準情形。由於其超出標準的情況並不嚴重,且均符合乙類陸域地面水體水質標準,整體而言水質尚屬良好。由於本測站位於核四廠址周界,該處水質應未受核四工區施工影響,且由於該測站附近有養豬戸廢水偶爾排入,故推測其有機污染情形可能與養豬戸之排放水有關。
- (3) 澳底第二號橋:位於石碇溪下游之澳底第二號橋測站本季三次水質採 樣分析結果,逾越甲類水體水質標準之項目為7、8月之生化需氧量、9

月之溶氧量和7~9月之氨氮,其中又以氨氮均超出乙類水體水質標準(0.33~2.59mg/L)。本測站歷次常出現有機污染物濃度偏高情形,顯示此河段兩岸之家庭與餐廳排放大量污水及上游養豬廢水所致;由於核四廠址內之員工污水目前皆經過化糞池處理後再予排放(其排放量推估詳表2.7-3),與澳底地區之家庭及餐廳污水量相較,核四廠區內之污染誠屬有限。

(4)石碇溪河口:因河口處測站係位於感潮河段,故僅進行鹽度監測,本 測站本季7月至9月鹽度之三次測值分別為6.6%。、20.0%。及32.9%。,以9 月之測值較高,主要係受海水漲退潮及河川流量變化之影響所致。

2.雙溪監測結果

由於核四廠區之施工污水係排至石碇溪,且生水抽水站尚未動工, 因此目前核四施工作業並不會對雙溪水質造成影響,故本季之雙溪水質 監測結果仍屬背景現況之反應,各測站水質分述如下:

- (1) 貢寮國小:本季貢寮國小測站三次水質採樣分析結果,未達甲類陸域 地面水水體水質標準者爲7月之懸浮固體、7、8月之生化需氧量及9月 之溶氧量和氨氮。
- (2)新社大橋:本測站本季三次水質採樣分析結果,主要未達甲類陸域地面水體水質標準者,包括氨氮(7、9月)及生化需氧量(7、8月)。
- (3)雙溪河口:本測站7月至9月鹽度之三次測值分別爲7.5%。、17.0%。及 31.2%。,以9月份之測值較高,其測值差異主要係受海水漲退潮及河川 流量變化之影響所致。

3.河川水質分析

(1)河川污染指標(RPI)評估

依據表 2.6-7「河川污染程度分類表」之推估方式,計算本季各測站之水質污染情況如表 2.6-8 所示。由推算結果可知,本季五處測站之河川水質,除澳底二號橋測站屬輕度污染,其餘測站均屬未受或稍受污染情形。本季石碇溪及雙溪水質多以生化需氧量、氨氮及溶氧量等三項測值有不符甲類水體水質標準,其餘各項測值超出標準的情況並不嚴重,整體而言,本季石碇溪與雙溪水質狀況尚屬良好。

(2)中央大學歐陽氏指標(WQI5)評估

歐陽嶠暉等人於 1990 年提出了一個適用於台灣的河川水指標,其內容如下:

- ①水質參數:包括溶氧量、生化需氧量、氨氮、懸浮固體和導電度等 五項。
- ②水質參數點數:WQI5 各項水質對應點數之設定,主要是以國內之河 川水體分類水質標準爲判定依據,並參考其他國家之水質標準將缺 項補足,再推出點數曲線來表示參數之水質點數,這些點數並可以 表 2.6-9 中所列公式計算。
- ③水質參數權數:依溶氧、生化需氧量、氨氮、懸浮固體、導電度的順序分別為 0.31、0.26、0.19、0.17、0.07。
- ④指標値之河川水質分類:根據歐陽氏指標値可以劃分河川水體分類 等級如表 2.6-10。

由結果顯示,石碇溪及雙溪之水質均屬良好至中等之乙類至丙類水體,各站評估結果詳表 2.6-11。

2.7 廠區放流水監測

本項監測主要係針對廠區各排入鄰近水體(石碇溪、鹽寮溪及雙溪)之放流口進行水質監測,然由於各放流口僅辦公區排水口(一)、(二)兩處測站完全爲廠區產生之污染源外,其餘測站均混合有山泉水(二號排洪渠道及鹽寮一、三號橋排洪渠道出口等三測站)或沼澤區水(宿舍區排水口測站),且廠區放流水目前亦尚未有明顯之法規標準規範,故本項監測結果(如表 2.7-1 所示)僅採用 87 年放流水標準中事業、污水下水道系統及建築物污水處理設施之廢污水等相關管制標準(表 2.7-2)做比較參考,其中辦公區排水口(一)、(二)及宿舍區排水口放流水水質之生化需氧量及懸浮固體兩項以建築物污水處理設施標準爲比較基準,而二號排洪渠道及鹽寮一、三號橋排洪渠道出口放流水之生化需氧量及懸浮固體兩項則以中央主管機關指定之事業廢水一貯煤場、營造業類別之管制標準爲參考依據。

本季監測結果顯示,各測站之 pH、油脂及生化需氧量均符合 87 年放流水標準,僅宿舍區排水及鹽寮三號橋排洪渠道懸浮固體測值(46.8~85.3 mg/L)未符合 87 年放流水標準。由於目前廠區施工產生的滲水、泥水均經沈澱處理,使合乎標準;且在三號排洪渠道設攔砂壩及蛇籠透水壩,以降低山區逕流因降雨所夾帶之泥砂,故工區內之水土保持工作可望改善。

另就施工人員污染排放總量對河川水質影響之推估方面,目前僅排至石碇溪,因此本計畫乃針對石碇溪水質影響進行推估。據統計目前施工區內之員工(辦公人員、保警、施工人員,詳表 2.7-3)污水皆經過化糞池處理達放流水標準後再予排放,其污染量推估詳表 2.7-4,BODs 之排放污染量為 2.80kg/day;石碇溪本季背景流量爲 0.088CMS(本季平均值),而 BODs 濃度爲 1.43mg/L(本季澳底二號橋實測之季平均值),故推算本施工區排放之污水量約佔石碇溪流量之 1.23%左右,且 BODs 污染量佔石碇溪背景污染量之 7.70%左右,其對石碇溪水質之影響尚屬環評預測增量 10.58%範圍內。由於河川沿線兩側有養豬場、養殖池分佈,且澳底地區之餐廳及家庭生活污水大多排放至石碇溪,故推測由澳底二號橋以下河川之有機污染情形主要是受此類污染源所影響。

2.8 地下水監測

本計畫之地下水監測,係採用台電公司既設之地下水監測井,選定 12 口進行地下水水位與地下水水質監測工作,其中水質監測自 88 年 6 月起增加懸浮固體項目。歷次監測之地下水監測井爲 GM1、GM3、GM6、P5、P8、GM9、GM10、GM11、GM12、GM13、GM7 及 GM14等,地下水水位與地下水水質監測結果分述如下。

1.地下水水位

本季(88年7月至9月)地下水水位調查,監測井 GM6、GM10及 GM14等三口監測井之水位爲連續監測,其餘九口監測井共進行 12次調查,調查月報表列於附錄 Ⅳ.6-1~附錄 Ⅳ.6-6,水位標高監測結果則整理於表2.8-1,並繪如圖 2.8-1 所示,地下水等水位線則繪如圖 2.8-2~圖 2.8-4所示,地下水流向係垂直於等水位線,大致由西部山區流向東部海域。整體而言,山區監測井(GM11、GM12、GM13及 GM14)之水位標高約在 26~45公尺之間,平地監測井之水位標高則多介於 1~15公尺之間;本季各測站之各次調查水位標高以 GM11及 GM13 二監測井之差異較大,最高水位標高與最低水位標高差約爲 1.5~3.0公尺,而以 GM7、GM9、GM10及 GM14四口水位標高變化較小。

2. 地下水水質

本季地下水水質監測分別於 88 年 7、8、9 月共進行三次採樣,水質分析結果整理於表 2.8-2,水質檢驗分析報告則列於附錄Ⅳ.6;由於國內目前尚未公告地下水體分類及水質標準,在考量當地居民可能抽取地下水作爲灌溉、養殖、洗滌或飲用等用途下,本報告乃參酌國內目前較相關之「飲用水水源水質標準」(86.9.24 發佈),引用該法規中「地面水體或地下水體作爲自來水及簡易自來水水源者」之標準爲比較依據(以下簡稱「飲用水水源水質標準」),分析探討各地下水監測井之水質狀

況,茲分述如下。

(1)pH

本季12口監測井中,以GM3、GM6、GM9、GM12、GM13及GM14 等六口監測井本季三個月份之pH低於6.5外,其餘監測井pH介於6.5~8.5 之間,其中以GM7測值最高,整體pH品質並不佳。

(2) 導電度

本季監測井之導電度測值以GM1及GM10監測井介於1,456 μ mho/cm \sim 3,500 μ mho/cm 較高外,其餘監測井測値介於108 μ mho/cm \sim 833 μ mho/cm \circ

(3)濁度

本季監測井三個月份之濁度監測值介於0.67NTU~246.0NTU之間, 其中以GM1及GM14監測井之測值最高,達26.9NTU~90.0NTU之間, 本季監測結果和上一季差異不大。

(4) 氯鹽

本季十二口監測井三次之氯鹽測值,以GM10監測井測值最高,達 426~468mg/L之間,其次爲GM1監測井測值較高,介於51.4~249mg/L 之間,其餘各測站之氯鹽濃度皆在65mg/L以下。

(5)懸浮固體

懸浮固體項目自 88 年 6 月起新增,12 口監測井之懸浮固體測值介於 ND(<2mg/L)~304.0mg/L,以 GM6 監測井測得濃度最高。

(6)硫酸鹽

本季十二口監測井之硫酸鹽測値介於 $ND\sim934mg/L$ 之間,以P5監測井測値最高,達 $91.9\sim934mg/L$ 之間。

(7)氨氮

本季以GM1監測井之氨氮測值最高,其氨氮測值介於 $0.73\sim127\,mg/L$ 之間,7月及9月監測值超過飲用水水源水質標準 $1\,mg/L$ 之限制,其餘各監測 井本季三個月之監測值均符合自來水水質標準,介於ND~ $0.42\,mg/L$ 之間。

(8)總有機碳

本季各監測井之總有機碳含量大致仍以GM1監測井之測值最高,介於7.37mg/L~41.0mg/L之間,部份超過飲用水水源水質標準4mg/L之限值,其餘監測井之測值則介於ND~2.21mg/L之間。

(9)總硬度

本季十二口監測井之總硬度以P5及GM1兩監測井測值最高,介於 $246\sim549\,mg/L$ 之間,其次爲P5及P8監測井,濃度介於 $119\sim284\,\mu\,g/L$ 之間。

(10)重金屬(鐵、錳、鉛、鎘、銅、汞、鋅、鉻及砷)

本季十二口監測井三個月之重金屬測值(鉛、鎘、鉻、砷、汞) 均可符合飲用水水源水質標準,另外項目測值則以鐵、錳濃度較高。

(11)綜合評析

綜合上述監測結果,本季十二口監測井以 GM1 及 GM10 等二口監測井之水質較差,其中 GM1 監測井除氨氮、化學需氧量及總有機碳項目有未符合飲用水水源水質標準情形外,導電度值亦頗高,達 1,456~3,500 μmho/cm;而 GM10 監測井以導電度氯鹽及總硬度濃度較高。由於 GM1 監測井所在位置位於 102 甲縣道旁,於石碇溪上游有養豬戸及住家分佈,故研判其污染來源係爲該養豬戸或家庭生活污水污染所致,至於 GM10 監測井位於海邊,其導電度及氯鹽濃度較高可能與海水入侵有關。

3.海水入侵監測研究

一般而言,地下水鹽化現象之來源除人爲污染外,主要爲天然鹽水(Connate Brines)及海水入侵(Salt Water Instrusion)所致,而地下水之鹽化若以溶解固體量做爲參考指標,則其溶解固體量超過 1,000mg/L 時,可視此地下水已有鹽化現象,此一數值如換算成導電度約爲 1,400 μmho/cm,亦即相當氯鹽濃度 330mg/L。若以上述指標檢視各監測井之水質資料,本季 12 口監測井中,有 GM10 監測井之導電度測值 1,686~1,762 μ mho/cm較高(其氯鹽濃度亦較高,達 426~468mg/L 之間),有鹽化現象出現,依據污染潛勢及地理相關位置判斷,GM10 監測井因其位置位於海邊,且地下水水位甚低,有可能與海水入侵有關。而本季 GM1 監測井之導電度測值雖較 GM0 爲高,甚至達達 1,456~3,500 μmho/cm,惟其氯鹽濃度未達鹽化限值,在 51.4~249mg/L 之間,且依該監測點之地下水位及地理位置(位於山坡上)判斷與海水入侵無關。

2.9 河域生態監測

1.葉緑素甲

8月監測結果,葉綠素甲含量兩條溪之值均介於 0.67 μ g/L~2.60 μ g/L 之間,各測站之監測值均不太高,爲屬一般正常範圍之內(表 2.9-1)。

2.附著性藻類

本季(8月)調查結果共計發現有藍綠藻(Cyanophyta) 1 種、矽藻(Bacillariophyta) 9 種及綠藻(Chlorophyta) 3 種(表 2.9-2)。各測站之藻類種類由 2 ~ 1 3 種不等。 其種類共計有藍綠藻門中的 Oscillatoria spp.等一種; 矽藻門中的 Bacillaria paradoxa、Cymbella ventricosa、Gomphonema spp.、Gyrosigma sp.、Melosira varians、Navicula spp.、Nitschia palea、Surirella spp.及 Synedea ulna 等 9 種;綠藻門有Closterium sp.、Scenedesmus sp.、Spirogyra sp.。

3.浮游植物

於本季(8月)監測調查結果,於兩條溪中共記錄有矽藻(Bacillariophyta)25種及綠藻(Chlorophyta)3種(表 2.9-3)。於石碇溪的總細胞密度介於 $2.53x10^5$ Cells/L~ $6.64x10^5$ Cells/L 之間,雙溪的總細胞密度介於 $0.28x10^5$ Cells/L~ $3.01x10^5$ Cells/L 之間。各測站的主要優勢種類分別石碇溪的第一測站以矽藻中的 $Nitzschia\ palea\$ 及綠藻中的 $Dictyosphaerium\$ sp.,第二、三測站以矽藻的 $Chaetoceros\ cuvisetus\$ sp. 為主要之種類,雙溪的一、二號測站以 $Nitzschia\ palea\$ 為主要優勢種類之外,第三測站以綠藻的 $Chlorella\$ sp.為主要之優勢種類。

4.浮游動物

於本季(8月)監測調查結果,於兩條溪中共發現有原生動物(Protozoa)4種、輪形動物(Trochelminthes)3種及節肢動物(Arthropoda)2種等(表 2.9-4)。總個體密度皆分別介於 1.00×10^2 ind./L $\sim 1.35 \times 10^4$ ind./L 之間,各測站的主要優勢種類分別石碇溪的第一、二測站以原生動物中的 $Arecella\ vulgaris$,第三測站以節肢動物中的 Cyclops sp.爲主要優勢種類;雙溪各測站均以節肢動物中的 Cyclops sp.爲主要優勢種類。

5.水生昆蟲

於本季(8月)監測調查結果,共採獲有蜉蝣目(Ephemeroptera)4種,蜻蛉目()1種,廣翅目(Megaloptera)1種、毛翅目(Trichoptera)3種、鞘翅目(Coleoptera)1種及雙翅目(Diptera)1種等6目9科11種(表 2.9-5)。因石碇溪的二號、三號測站及雙溪二號、三號測站皆屬於感潮帶水域或滿共計有5種的水生昆蟲,其中以蜉蝣目的Ecdyonurus yoshidae(吉田蜉蝣)18隻爲本測站主要之優勢種類。而石碇溪以較上游的一號測站共計有8種的水生昆蟲,其中以蜉蝣目的Ecdyonurus yoshidae、毛翅目中的 Chimarra sp.爲佔優勢。

6. 魚類及無脊椎動物

於本季(8月)監測調查結果,共發現有魚類(Fishs)5種,甲殼類(Crustacea)6種及軟體動物(Mollusca)4種等(表 2.9-6)。魚類有鯉科的台灣石鱈(Acrossochelius pardoxus)、粗首鱲(Zaccopachycephalus),慈鯛科的吳郭魚(Tilapia sp.),鰕虎科中褐吻鰕虎(Rhinogobusia brunneus),塘鱧科的棕塘鱧(Eleotris fusca)等5種;甲殼類有無齒螳臂蟹(Chiromates dehaani)、淡水長臂蝦(Macrabrachium sp.)、五鬚蝦(Palaemon sp.)、雙齒近相手蟹(Perisesarma bidens)、褶痕近相手蟹(Parasesarma plicatum)、招潮蟹(Uca sp.)等6種;軟體動物有小椎實螺(Rsdix auricularia swinhoei)、台灣蜆(Corbicula

fluminea)、蜑螺(Clithon sp.)及壁蜑螺(Septaria sp.)等4種∘

以上魚類及蝦類皆以放置蝦籠,並配合手拋網及手操網的方式捕獲為本季實際捕獲之種類及數量,其結果如表 2.9-6 所示。另外,以潛水方式及配合訪問雙溪附近居民得知,可能尚有白鰻、鯽、鯰、湯鯉、日本禿頭鯊、黑星銀 及極樂吻鰕虎等之魚類。

綜合以上結果,由浮游植物、浮游動物及水生昆蟲,並依據台灣河川污染生物指標及水質等級評估之研究來判斷其污染等級;浮游植物中 Nitszchia pelea 爲適存於 α -中腐水性水質至 β -中腐水性水質之種類,浮游動物的 Arecella spp.、Cyclops sp.的幼生均爲適存於 β -中腐水性水質,水生昆蟲的 Ecdyonurus yoshiae 爲適存貧腐水性水質。故推測石碇溪的一號與雙溪的一、二及三號等測站應屬貧腐水性水質至 β -中腐水性水質,石碇溪的二、三號等測站應屬 β -中腐水性水質(附圖 2.9-1)。

2.10 海域水質監測

本季監測共進行三次採樣調查,採樣時間分別爲88年7月6日、8月4日及9月1日,三次分析結果整理如表2.10-1所示。依據行政院衛生署75年2月4日衛署環字第五七五七七五號公告之「台灣地區沿海水區範圍」,本監測工作之四處海域水質測站均位於甲類海域水體範圍內,而海域水體水質標準則依行政院環保署87年6月24日環署水字第〇〇三九一五九號令修正發佈之「地面水體分類及水質標準」(詳見表2.6-5至2.6-6)之規定。由本季核能四廠附近海域四處水質測站監測結果顯示,僅一號測站表、底層及四號測站表、底層7月之生化需氧量超過甲類海域水體水質標準,其餘各項測值均符合甲類海域水體水質標準。由於超出標準之測站分別位於澳底漁港、福隆海水浴場外側海域,應與漁港及海水浴場人爲污染有關。

此外,爲瞭解核四附近海域水體混合狀況,海水有無分層現象,比較測站表層及底層海水之水溫、導電度及溶氧發現,本季各測站並無明顯之差異。另由CTD調查(2.13節)亦無明顯之斜溫層或鹽度差異。依海洋學之觀點,於水深20公尺以內之近岸區域,由於受波浪及潮汐作用,水層上下將呈現均匀混合之現象,一般稱作混合層(Mixing layer),因此除非沿岸有大量河川淡水、降雨或溫度、鹽度差異大之水流混入,否則應不致有分層現象發生。

本季核能四廠工程主要爲第一、二號機廠房區廠基開挖工程、龍門(核四)計畫第一、二號機核島區廠房結構工程、混凝土製造供應工程等,均在陸域上進行,而循環水進水口防波堤及重件碼頭工程 7 月份已開始於海域動工,由於目前工區周圍設置深水溝及涵管,防止降雨沖刷地表之污染機會,且拋石在拋進海域前已經過清洗,並在築堤前方裝設防污濾布,故目前對海域水質並無影響。

2.11 海域生態調查

1.環境因子

核四電廠預定地附近海域之第一季現場水文與水質化學環境採樣調查,已於民國88年7月6日完成。本計畫共設置10個測站,其中第7、8站因深度較淺,故僅採取表層及3公尺之水樣,其餘各站則均採取表層(0公尺)、3公尺及底層(10公尺)等不同深度之水樣。當日最低潮約爲上午八點五十五分左右,最高潮約爲下午二點三十六分左右,而出海時間約爲上午十點左右開始採樣,順序則依次爲9、1、5、6、10、4、8、3、7、2,至下午四點二十分左右完成,故採樣時間應爲由漲潮至最高潮而後再退潮之過程。樣品攜回實驗室後,立即加以測定營養鹽(硝酸鹽、亞硝酸鹽、磷酸鹽、矽酸鹽)、葉綠素甲、基礎生產力、總氮、總磷等。茲將實驗室所得結果逐項分述如下(見表2.11-1):

(1)營養鹽

在植物性浮游生物及藻類生長所需要之營養鹽方面:

①硝酸鹽

介於 0.044 mg/L~1.134 mg/L之間,最高值出現在第9站之底層處,最低值則出現在第9站之表層處。整體而言,各站間水平方向之硝酸鹽含量差異均不大,均屬低含量,同站間之垂直變化則均不甚規則。

②亞硝酸鹽

均介於 0.010mg/L~0.300mg/L 之間,最高值出現在第 5 站之底層處,最低值則出現在第 5 站 3 公尺及第 9 站之底層處。整體而言,

各站間之亞硝酸鹽含量差異均不大,同站間之垂直變化亦均不規則。

③磷酸鹽

介於 0.03mg/L~0.14mg/L 之間,最高值出現在第 6 站之底層處,最低值則出現在第 3 站之表層、3 公尺處。整體而言,各站間之差異均不大,垂直深度間之變化亦均不規則。

4砂酸鹽

介於 0.51mg/L~1.16mg/L 之間,最高值出現在第 3 站之表層處,最低值則出現在第 5 站之 3 公尺處。整體而言,各站間水平方向之矽酸鹽含量差異均不大,且均屬低含量,同站間則大致呈垂直遞增之分佈趨勢。

②葉緑素甲

均介於 0.99 μ g/L~3.97 μ g/L 之間,最高值出現在第 5 站之底層處,最低值則出現在第 1 站之 3 公尺處。各站在水平方向之差異均不大,同站間垂直深度之變化則均不規則。

(3)總氮

介於 0.02mg/L~0.34mg/L 之間,最高值出現在第 5 站之底層處, 最低值則出現在第 5 站之 3 公尺及第 9 站之表層處。各站間水平方向 之差異均不大,垂直方向亦無規則變化情形出現。

(4)總磷

均介於 0.03mg/L~0.14mg/L 之間,最高值出現在第 6 站之底層處,

最低值則出現在第 3 站之表層處。各站間水平方向之差異均不大,垂直方向亦無規則變化情形出現。

2.生物因子

(1)基礎生產力

介於 $0.45~\mu$ gC/L/hr~ $0.99~\mu$ gC/L/hr 之間,最高值出現在第 5 站之底層處,最低值則出現在第 1 站之 3 公尺處,至於其變化之趨勢則大致與葉綠素甲之含量類似。

②植物性浮游生物

核能四廠施工期間環境監測海域生態本季之採樣調查已於民國八十八年七月六日順利完成,共分爲十個測站,除第七、八兩測站只採0米、3米外,其餘測站則皆採0米、3米及底層;而分析結果發現金黃藻門(Chrisophyta)中之矽藻綱(Bacillariophyceae)41種以上與金黃藻綱(Chrysophyceae)1種、藍綠藻門(Cyanophyta)中之藍綠藻綱(Cyanophyceae)1種與甲藻門(Pyrrophyta)2種,共三大門45種以上之藻類;以矽藻之細胞密度最高,佔總密度之92.28%,其中以角刺藻屬(Chaetoceros)爲主要優勢藻,佔細胞總密度的40.69%;而次要優勢藻有矽藻中之舟形藻屬(Navicula),佔總密度之8.27%,而矽藻中亦佔總密度不低比例之藻類尚有曲殼藻Achnanthes sp.與伏恩海毛藻Thalassiothrix frauenfeldii,依序佔總密度之6.81%、5.27%,藍綠藻中之東毛藻Trichodesmium sp.佔細胞總密度之百分比爲7.45%且細胞只於第二測站之表層有發現;至於金黃藻與甲藻的細胞密度則都不高,依序分佔總密度0.09%、0.18%(表2.11-2)。

各 測 站 平 均 細 胞 密 度 値 , 以 第 二 測 站 爲 最 高 , 可 達 $1.27 \times 10^4 \text{Cells/L}$,最低 測 値 出 現 於 第 六 測 站 , 只 有 $4.90 \times 10^3 \text{Cells/L}$, 其 餘 各

測站之測值則介於5.60×10³Cells/L~1.15×10⁴Cells/L之間;浮游植物細胞之水平分佈近岸海域以第七站之測值較高於第八站,中岸海域(第一~第三測站)則以第二測站之測值最高,遠岸海域(第四~第六與第九~第十測站),除第四測站之測值較低於第十測站外,大致上呈現由北向南依序遞增之現象。

各測站細胞密度的垂直分佈,以第二測站表層的密度值最高,計 $3.00\times10^4\mathrm{Cells/L}$,最低測值出現於第四測站之 3 米水層與第十測站之底層,只有 $2.20\times10^3\mathrm{Cells/L}$,其餘各測站、水層之細胞密度值則介於 $3.00\times10^3\mathrm{Cells/L}\sim1.66\times10^4\mathrm{Cells/L}$ 之間;各水層細胞密度的平均值以表層水域最高,可達 $1.16\times10^4\mathrm{Cells/L}$,其次爲 3 米水層,計 $6.40\times10^3\mathrm{Cells/L}$,而底層水域之測值最低,爲 $5.00\times10^3\mathrm{Cells/L}$;浮游植物細胞密度之垂直分佈呈現隨水深之增加而依序遞減之現象(圖 2.11-1)。

(3)動物性浮游生物

本季採樣於八十八年七月完成,十個測站浮游動物之個體量分布介於 2.96×104~7.12×104ind./1000m3,以測站間個體量分布來看,以第 9 測站的總個體密度爲最高值,最低值出現於第 10 測站,本季之平均個體量爲 4.94×104ind./1000m3。生體量之分布則以個體量最高之第 9 站爲最高有 80g/1000m3,最低值出現在個體量最低之第 10 站只有27g/1000m3,但其它測站則出現與個體量間相關現象。

本季採獲之種類中仍以橈腳類(Copepoda)居明顯之優勢,並佔總個體量之 72.24%,其他水螅水母(Hydromedusae)、箭蟲類(Sagittidae)、對蝦類(Penaeidea)、螢蝦類(Luciferidae)、DOLIOLETTA(浮游性被囊類)、尾蟲類(Oikopleuridae)及海桶類(Salpida)分別佔有總量之3.05%、3.27%、2.67%、2.12%、5.07%、2.18%及2.10%比例外,其

(4)底棲無脊椎動物

由於調查區海域之海底同時包含岩礁與沙質兩種底質環境,故採用不同的採樣方式進行調查;沙質環境採用 Naturalist's dredge 之拖曳方式採集,而岩礁環境則以 SCUBA 水肺潛水方式於水底直採採集或照相記錄觀察。

本季於沙質(第3與第4測站)之底棲無脊椎動物於8月份完成調查,詳如表2.11-4所示,兩個測站共採獲3種軟體動物(Mollusca)、5種甲殼動物(Crustacea)、以及環節動物(Annelida)、魚類(Pisces)各1種共計10種。本季採獲生物種類,除三種軟體動物,即白櫻蛤Macoma sp.、文蛤 Meretrix sp.及簾蛤 Veremolpa sp.均比其他種類多,分別佔總數之17.65%、17.65%及14.71%。其它種類出現之密度均不高,都只有三枚以下。本次採樣於第3測站與第4測站分別可採獲8種與10種,但第3站則有較高之生物密度,共計18枚生物標本;本次兩站種的歧異度差異不大,分別有0.84與0.96。

於潛水調查方面,本季共記記錄到環節動物(Annelida)、脊索動物(Chordata)、腔腸動物(Coelenterata)、甲殼動物、棘皮動物(Echinodermata)、軟體動物及海綿動物(Porifera)等七大類 44 種大型底棲無脊椎動物。其中以棘皮動物較多有 13 種爲最多,其次爲軟體動物也有 12 種,當中以白尖紫叢海膽 Echinostrephus aciculatus 在調查區有較多發現,而紫海膽 Anthocidaris crassispina、魔鬼海膽 Diadema setosum、細腕海星 Echinaster luzonicus、環鋸棘頭帕海膽 Prioncidaris baculosa 與馬糞海膽 Tripneustes gratilla 亦很常見。各種甲殼動物之數

量則不多除藍色細螯寄居蟹 Clibanarius virescens 較常見外,僅呈零星之分布。其他各大類所可發現之種類亦多偶然出現密度皆不高(表 2.11-5)。

而於澳底及鹽寮附近潮間帶岩礁區之採樣調查,本季共採獲 8 種甲殼動物與 3 種軟體動物。各種甲殼動物中於兩個測站皆可採獲到只有平背蜞 Gaetice depressus、肉球近方蟹 Hemigrapsus sanguineus、短獎蟹 Thalamita sp.及扇蟹 Xanthidae,其中以平背蜞較多,共 17 枚。3 種軟體動物包括石疊螺 Monodonta sp.、漁舟蜑螺 Nerita albicilla 與笠螺 Cellana sp.於兩測站皆可有尚稱豐富的數量出現(表 2.11-6)。

(5) 魚類

魚類調查分爲仔稚魚與成魚兩部份分別進行,仔稚魚之採樣係以 Macruchi-D 型仔稚魚網於各測站進行水平拖曳採樣,成魚則直接以潛 水方式於澳底與鹽寮附近亞潮帶岩礁區進行調查記錄。

- ①仔稚魚:表 2.11-7 所示,於八個採樣測站中本季皆沒有採到仔稚魚。各測站的魚卵則介於 39~216ind./1000m³之間。以第 6、9 兩測站較多,其次爲第 4、5 兩站,其它測站都未超過 100ind./1000m³。整體來,本次採樣魚卵數量已較前季明顯減少,顯示可能正係已超過魚類之繁殖季節。
- ②成魚:於冬季在岩礁地區潛水調查結果,共發現 28 科 62 種魚類,詳見表 2.11-8 所示,各科魚類之中,以隆頭魚科(Labridae)、雀鯛科(Pomaacentridae)以及蝶魚科(Chaetodontidae)爲最多,分別記錄到10、8 與 5 種魚類。其它科只有1或2種可被記錄。在各魚種出現的相對數量上則以雀鯛科之藍雀鯛 Pomacentrus coelestis 爲優勢種,其次爲道氏天竺鯛 Apogon doederleini、雙帶烏尾冬 Pterocaesio diagramma,再其次爲蝶魚科之耳帶蝶魚 Chaetodon auripes、雀鯛科

之燕尾光鰓魚 Chromis fumea、三點光鰓魚 Dascyllus trimaculatus、 鮊科之斑馬簑鮊 Dendrochirus zebra、四齒魨科之網紋尖鼻魨 Canthigaster rivulata、角蝶科之角蝶魚科 Zanclus cornutus。

⑥大型藻類

本季大型藻類之調查結果,鹽寮地區及澳底地區的大型藻類發現 綠藻植物門(Chlorophyta)5 種及紅藻植物門(Phodophyta)7 種及褐藻植 物門(Phaeophyta)1 種等共 13 種藻類。調查中於鹽寮、澳底之調查區分 別發現海藻 10 種與 11 種。兩區皆可發現種類有 8 種。詳如表 2.11-9。 種類比上一季(88年2月)稍有增加。其中以綠藻植物門中裂片石蓴 Ulva fasciata.最爲豐富,其次爲腸滸苔 Enterompha intestinalis,紅藻植物門 中之石花菜 Gelidium amansii 在兩地亦稱豐富。

(7)珊瑚

本季之調查係選擇鹽寮附近海域突礁石區爲主。在 5 個測站中,以隨機方塊樣區(50*50cm²)直接記錄珊瑚礁體表面於此樣區內的珊瑚種類數目與大約之覆蓋面積比例。四個水深(-5公尺、-7.5公尺、-10公尺、-12.5公尺)的調查結果詳如表 2.11-10 所示。四個不同水深樣區中,水深 5公尺處各樣區約有 2~5種珊瑚,平均有 3.4種/50×50 cm²,覆蓋面積比例介於 40%~55%差異不甚大,平均覆蓋度可達 46%;水深 7.5公尺則亦爲 2~4種,平均只有 3種,覆蓋度則較 5公尺處爲低大約在 25%~40%,平均爲 33%;而水深 10公尺由於有部份已受到砂質區之影嚮,各樣區只有 1~3種,覆蓋度則由 15%~25%,平均則有 21%,水深 12.5公尺則更少,種數僅有 1-2種,平均爲 1.2,覆蓋面積在 10%~15%之間,平均爲 12%。

2.12 漁業調查

1.漁業生產統計及經濟分析

(1)淺海養殖戶

就淺海養殖戸而言,貢寮地區淺海養殖戸以九孔爲最主要養殖物,大部分是以築堤式爲主要養殖方法,即利用海岸岩礁地形築池放養,以天然潮水進行水質交換來養殖九孔。養殖戸的經營型態中,獨資經營者佔33.33%,合資經營者佔66.67%。養殖方式除部分已開始從事陸上養殖外,目前仍以離岸100公尺的淺海養殖爲主。88年海上養殖佔62.96%,陸上養殖佔22.22%,同時經營海上及陸上養殖者佔14.82%(表2.12-1)。

在養殖面積方面,88年6~8月份平均養殖面積爲3,561.92平方公尺/月/戸。在產量方面,6~7月平均生產量分別爲3,705公斤/月/戸、1,780公斤/月/戸、8月則正值九孔養殖戸新放養仔苗不久,故尚無收成;在產值方面,6~7月平均產值分別爲1,620,000元/月/戸、741,750元/月/戸、及8月亦尚無產值;在單位面積產量方面,標本戸6~7月平均單位產量分別爲1.04公斤/平方公尺/月/戸、0.5公斤/平方公尺/月/戸;在平均單價方面,88年6月爲258元/公斤,88年7月爲250元/公斤(表2.12-2)。在銷售狀況方面,88年6月份主要是以售予承銷商(100%)爲主,承銷商則以外銷香港(轉口大陸)、日本居多,8月亦以售予承銷商(66.64%)及售予餐廳(10.08%)爲主(表2.12-3)。

就養殖成本而言,在固定成本中以設備費用爲主要支出,而變動 成本則以飼料費及薪資支出爲主。本季 88 年 6~8 月標本戸在電費支出 方面,平均月別支出分別爲 6 月 51,294 元/月/戸、7 月 26,490 元/月/ 戸及 8 月爲 28,578 元/月/戸;在損耗維修費支出方面,平均月別支出 皆爲 124,000 元/月/戸、20,500 元/月/戸及 0 元/月/戸;在薪資支出方面月別平均支出分別爲 85,125 元/月/戸、3,714 元/月/戸及 69,900 元/月/戸(表 2.12-4)。另外單位面積成本方面,月別平均電費支出分別爲 14.4 元/平方公尺/月/戸、7.4 元/平方公尺/月/戸及 8 元/平方公尺/月/戸;在月別平均飼料費方面分別爲 41.9 元/平方公尺/月/戸、45.1 元/平方公尺/月/戸及 64.9 元/平方公尺/月/戸;月別損耗護維修費皆爲 34.5 元/平方公尺/月/戸、5.8 元/平方公尺/月/戸及 0 元/平方公尺/月/戸;月別薪資支出方面平均分別爲 23.9 元/平方公尺/月/戸、20.7 元/平方公尺/月/戸及 19.6 元/平方公尺/月/戸(表 2.12-5)。

2)漁撈戶

就漁撈戶而言,貢寮地區漁撈戶多爲沿近海漁業經營,其作業漁區是以6浬海域內的作業爲主,以88年6~8月爲例,6月份爲97.8%,7月份爲96.09%,8月份爲94.9%(表2.12-6)。在出海作業次數方面,漁撈戶每月的平均出海次數在6月份爲9次/戶,7月份爲14次/戶,8月份爲13次/戸(表2.12-7)。本地區漁撈戶多爲自有船隻,平均作業人數1~2人,其作業的漁法、漁具隨著漁季的不同而異,作業漁法以沿岸採捕、一支釣(包括手釣、釣具等)、刺網、燈火漁業、曳繩釣、延繩釣、飛魚卵等作業爲主。在6月份,作業漁法以沿岸採捕36.84%爲主、7月份作業法以沿岸採捕爲主佔35%爲主,其次依序爲燈火漁業30%,刺網15%;及一支釣佔10%;8月份作業漁法以沿岸採捕爲主佔35%,其次爲燈火漁業佔30%,一支釣佔15%,刺網佔10%(表2.12-8)。

貢寮地區 88 年 6 月份之主要漁獲物有煙管仔、飛魚卵、龍蝦、赤 鯮、白帶魚、小卷等,7 月份主要漁獲物有煙管仔、煙仔魚、赤鯮、小 卷、龍蝦、白帶魚等,8 月份漁獲物有煙管仔、煙仔魚、小卷、赤鯮、 紅魽、白毛等(表 2.12-9)。 在銷售管道方面,88年6月份以售予承銷商47.32%爲最高,7月份以售予承銷商97.38%爲最高,8月份以售予魚販38.74%爲最高(表2.12-10)。

就漁撈作業成本而言,在固定成本中是以設備費爲主要支出,而變動成本則包括燃料油費,餌料費、維修費及雜支費等。88年6月份每戸平均燃料油費爲6,652元/月/戸,餌料費爲1,917元/月1/戸,雜支費爲4,136元/月/戸,維修費爲5,500元/月/戸;7月份每戸平均燃料油費爲7,264元/月/戸,餌料費爲2,497元/月/戸,雜支費爲3,611元/月/戸,維修費爲5,850元/月/戸;8月份每戸平均燃料油費爲11,907元/月/戸,餌料費爲3,725元/月/戸,雜支費爲7,047元/月/戸,維修費爲18,200元/月/戸。整體而言,漁撈作業成本在88年6月份爲18,205元/月/戸,7月份爲19,222元/月/戸,及8月份爲40,897元/月/戸(表2.12-11)。

2.漁業活動

依據臺灣省漁業局所提供之最新 88 年貢寮地區船籍資料,作業漁船總計有 312 艘,各漁港之船隻數分別爲龍洞漁港 40 艘,和美漁港 5 艘,美灩山漁港 15 艘,澳底漁港 151 艘,福隆漁港 42 艘,龍門漁港 4 艘,卯澳漁港 25 艘,馬崗漁港 27 艘,港別登記不詳者有 3 艘。依主管漁業別區分有一支釣、棒受網、延繩釣及底延繩釣、鏢旗魚、流網及底刺網、單船拖網、焚寄網(表 2.12-12)。

貢寮地區漁民主要從事釣具漁業及燈火漁業,當釣具漁業漁期結束後,緊接著便是燈火漁業之漁期開始,而燈火漁業漁期結束後,則又是釣具漁業之漁期開始,如此交替循環著。從事釣具漁業之漁民中,執照登記爲釣具漁業及燈火漁業者約各佔一半,而執照登記爲刺網漁業及鏢旗魚漁業者僅佔少數;從事燈火漁業者和從釣具漁業者之情形相同;從事刺網漁業及鏢旗魚漁業者則以執照登記爲釣具漁業佔大多數。由此可

知,此地區之漁民並非只從事其執照登記之漁業種類而已,而是會隨漁 獲對象、漁業變化而改變其漁具及漁法之作業方式。

3. 燈火漁業

貢寮地區燈火漁業之漁期大約在每年的 4-10 月間,因此本報告所調查之標本戸在夏季(6~8 月)爲燈火漁期開始之盛漁期。在產量產值方面,88 年 6 月平均每戸之產量爲 2,766 公斤,產值爲 70,153 元,以煙仔管(2,333 公斤/戸)爲大宗;7 月平均每戸產量爲 6,870 公斤,產值爲 132,728 元,以煙管仔(5,766 公斤/戸)爲最多;8 月平均每戸產量爲 3,749公斤,產值爲 114,990元,同樣以煙管仔(1999 公斤/戸)爲大宗。本季 CPUE 如表 2.12-13 所示,本季以 88 年 7 月份 308 公斤/日/戸爲最高,其次爲 88 年 6 月份 224 公斤/月/戸。而 IPUE 則以 88 年 8 月份 6,160 公斤/日/戸爲最高,88 年 7 月份 5,943 公斤/日/戸次之。

根據本報告調查發現,貢寮地區燈火漁業標本戸主要是在春、夏及 秋季(3~11月)間進行燈火漁業的捕撈作業,由於受到季節推移及魚種 交替之影響,春季(3~5月)及秋季(9~11月)除從事燈火漁業外,其 餘時期多兼營釣具漁業或其他漁業,而冬季(12月至翌年2月)時則因 東北季風之來臨,已無標本船從事燈火漁業,大部分都從事一支釣漁業。

4.刺網漁業、飛魚卵漁業、鏢旗魚漁業及釣具漁業

(1)刺網漁業

貢寮地區 88 年 6 月至 88 年 8 月,平均一個標本戸所漁獲各魚種之漁獲重量,合計約有 34 種魚類、3 種頭足類及 4 種甲殼類。6 月以三棘天狗鯛(Prionus scalprus)的 21.3 公斤/戸最高,其次爲蘭勃舵魚(Kyphosus lembus)的 20.0 公斤/戸,第三位爲龍蝦類的 16.9 公斤/戸。7

月漁獲量減少,仍以三棘天狗鯛的 16.2 公斤/戸居首位,其次爲龍蝦類的 14.7 公斤/戸,第三位爲蘭勃舵魚的 12.3 公斤/戸。8 月漁獲轉佳以天 竺 舵 魚 的 73.9 公斤/戸最高,其次爲雙帶烏尾冬(Dterocaesio diagramma)的 54.5 公斤/戸,第三位爲拉洋圓鰺的 43.3 公斤/戸。三個月之漁獲總產量爲 434.9 公斤/戸。

就各月份各魚種別之產值而言,6月以龍蝦類之 16,466 元/戸最高, 其次爲蘭勃舵魚的 6,960 元/戸。7月仍以龍蝦類的 15,023 元/戸最高, 蘭勃舵魚之 4,566 元/戸居次。8月以天竺舵魚 17,627 元/戸居首;其次 爲龍蝦類之 7,076 元/戸及蘭勃舵魚之 4,366 元/戸。合計三個月的漁獲 總值,就各別魚種來看,以龍蝦類產值最高,計達 38,565 元/戸,其它 依序爲天竺舵魚 17,994元/戸、蘭勃舵魚 15,892元/戸、雙帶烏尾冬 9,317 元/戸。合計三個月漁獲總產值爲 118,681 元/戸,比上一季之 162,042 元/戸減少,但較去年同期之 107,053 元/戸略增。

本次刺網業調查之平均作業天數、平均漁獲量、平均漁獲產值、CPUE、IPUE等均示於表 2.12-14。如表所示,從 88 年 6 月至 88 年 8 月平均一戸標本戸每月之作業天數分別為 11.0、9.2、6.8 日/戸,每戸每月之漁獲量分別為 132.0、75.3、227.6 公斤/戸。平均漁產值分別為 41,823、27,988、48,870 元/戸。

(2)飛魚卵漁業

本省北部海域飛魚卵漁業作業漁期約在農曆 4~5 月,由於在此期間飛魚魚群聚集於本省東北海域,在海藻間產卵。漁民乃依其習性利用由稻草編成之漁具,使飛魚穿梭於垂下之稻草束中產卵,然後收取附著其上之飛魚卵。

本季爲漁期末,僅有6月份有戸標本戸從事作業,其他標本戸改

從事燈火漁業或釣具漁業。作業天數爲 8.0 日/戸,共漁獲飛魚卵重量達 213.4 公斤/戸,漁獲產值爲 26,460 元/戸;其 CPUE爲 26.7 公斤/日/戸,IPUE爲 3,308 元/日/戸。本季僅 6 月有漁獲,CPUE、IPUE皆低於1995、1996、1997 年而高於 1998 年。因爲大陸漁船的加入競爭捕撈,使得漁獲量減少,更因而造成本地區漁民從事作業的意願不高。

(3)鏢旗魚漁業

貢寮地區鏢旗魚漁業經在各漁港實地訪查後了解,在澳底漁港有4艘,由於鏢旗魚之作業期間僅有四個月左右,因此漁船皆為兼營性質,在非漁期時則主要從事火誘網、刺網、釣具等漁業。鏢旗魚作業從東北季風開始吹起時,漁期才展開,以有風小浪爲適宜的作業天氣。作業區域爲鼻頭角至三貂角間的海域。本次調查期間爲非漁期、無漁獲資料。

(4) 釣具漁業

釣具漁業標本戸本季查期間最多有 11 戸從事作業。其中龍洞 2 戸,澳底地區 8 戸,而卯澳 1 戸。本季釣具漁法以底延繩釣、竿釣二種。本季調查之漁獲共計有魚類 19 種及頭足類 2 種。就魚種別而言,7 月、8 月皆以石狗公(Sebastes marmoroctus)爲最高;6、7 月居次者爲赤鯮,6 月居第三位爲裸胸鯙類;7 月第三位爲寒鯛;三個月合計總漁獲產值以赤鯮之 44,701 元/戸爲最高,石狗公之 27,922 元/戸居次,再其次爲白烏賊之 12,485 元/戸。三個月總漁獲產值爲 109,469 元/戸,較上一季之 155,138 元/戸及去年同期之 149,442 元/戸減少。

標本戸之平均作業天數、平均漁獲重量、平均漁獲產值、CPUE 及 IPUE 如表 2.12-15 所示。就每月平均一戸之作業天數 6 月、7 月、8 月分別爲 10.7、12.0、11.8 日/戸;就漁獲產量而言分別爲 126.8、93.9、102.6 公斤/戸;其每月漁獲產值則分別爲 39,330 元/戸、31,641 元/戸、

38,498 元/戸。本季調查三個月的 CPUE 分別為 11.9、7.8、8.7 公斤/日/戸,平均為 9.5 公斤/日/戸。

5. 物仔魚漁業、休間漁業及沿岸採捕業

(1) 魩仔魚漁業

貢寮沿岸海域可進行魩仔魚漁業,除了福隆沿岸之沙質底質地形外,其他區域則無此項漁業。該地區主要漁撈戸共有 4 組,每組作業船有 3 艘,其中兩艘爲作業船,負責網具的拖曳工作,另一艘則爲搬運船,負責起網漁撈漁獲與搬運工作。漁期主要爲春(農曆 3~6 月)及秋(農曆 8~10 月)兩季,漁期雖長,但每季的實際總作業天數大都在 30 天以內,主要漁獲魚種有魩仔魚、苦蚵仔、青鱗及臭肉鰮等。其作業漁法爲雙拖網,亦即每組作業船包含有拖曳網船 2 艘,搬運膠筏一艘,作業人數 5~6 人不等。本季(6~8 月)中 6 月 14~17 日共捕獲 鱙仔 1,684 公斤,而 6 月 25 日至 7 月 1 日止則漁獲魩仔魚 633 公斤,總計爲 2,317 公斤。CPUE爲 233.25 公斤/日/戸,總產值爲 189.660 元。去年同時期並無數仔魚及鱙仔的漁獲資料。

(2)娛樂漁業

本季期調查 3 組作業船,平均每戸出海日數分別為 18、17 及 22 日/戸,平均漁獲量分別為 7.1、16.5 與 6.1 支/日/戸(釣竿數)。6 月間主要漁獲魚種以透抽、赤鯮、石狗公、魚虎、突目雞等為主;7 月間主要漁獲魚種以透抽、赤鯮、白帶、石狗公、馬頭魚等為主;8 月間主要漁獲魚種以透抽、赤鯮、甘仔、石狗公、深海鱸、包公雞(30 公斤/戸)、土目、大目鰱、白達、黑草魚、馬頭、花飛等為主。如以船主

收取費用每船約 8,000 元/日,燃料費之成本約 1,000 元/日,本季每艘海釣漁船平均出海作業約 19 天,淨收入約為 133,000 元。相較去年同季之淨收入(132,160 元)並無差異。

(3)沿岸採捕業

沿岸採捕業之標本戸共計 7 戸,分別爲龍洞 2 戸、澳底 4 戸及馬 崗 1 戸。其作業方法通常視作業地點之水深不同,以潛水或涉水兩種 直接採捕方式進行之,利用舢舨出海進行沿岸採捕作業者甚少。採捕 種類計有石花菜、紫菜、髮菜、鹿角菜、青苔菜、茶米菜、茭白菜、 龍鬚菜、貝菊、石菊、海膽等,且隨著天候季節之不同,採捕種類亦 大不相同,如夏季以石花菜爲主,冬季之種類較多,主要有紫菜、髮 菜、鹿角菜及青苔菜等。一般而言,天候之變化與潮汐是其作業參考 依 據 。 天 氣 不 好 (雨 天) 與 風 浪 大 時 , 採 捕 作 業 停 止 ; 天 候 良 好 時 則 視 潮 汐 之 變 動 而 定 , 當 大 潮 時 , 潮 水 上 漲 , 海 菜 定 著 位 置 相 對 於 海 平 面 較 深 , 因 而 採 捕 及 潛 水 不 易 , 故 漁 民 通 常 以 小 潮 之 退 潮 時 日 , 在 潮 間帶涉水(石花菜)或深水區潛水(紫菜及髮菜)採捕。採捕時,以 3~5 人一組,並以繩子編成之網袋放置採捕之海菜。又因應漁戸居住之 場所之不同,標本戸實際採捕之地點亦不相同,龍洞地區之採捕戸以 龍洞沿岸爲主,鹽寮地區之標本戸的採捕範圍則較廣,由火炎山及龍 洞沿岸地區至鹽寮沿海均是其採捕範圍,而馬崗地區之標本戸則在其 附近之大香蘭沿岸採捕,採集地點亦大致固定,且並排全面性採集。

本地區 6 月份共有 7 個標本戸作業,每一個標本戸平均採集作業日數約 9 天,約每 3~4 天即採捕一次,最主要採捕種類以石菜花爲其大宗(252.3 公斤/戸),其次爲九孔(15.4 公斤/戸)、海膽(6.5 公斤/戸)等,其總採捕產值約爲 31,204 元/戸/月;與去年同期總採捕產值23,194 元/戸/月,約減少 34.5%。

7月份之採捕日數,平均每一標本戸採捕作業日數約8天,採捕種

類與去年同期差不多,以紫菜、鹿角菜、茶米菜、貝菊、石菊、石花菜、九孔、海膽等爲主,總產值約 19,244 元(較去年同期總產值 22,108元,約減少 12.95%);8月份標本戸平均作業天數爲8天,採捕種類則以石花菜、鹿角菜、九孔、海膽、茭白菜、龍蝦、紫菜、貝菊、石菊、茶米菜、青苔菜、鐵甲爲主,總產值約 14,261 元/戸/月(較去年同期總產值 15,035 元,約減少 5%)。

6.九孔及其他養殖漁業

由於此時正值九孔新一季的養殖週期,所有的養殖戸均剛放養九孔 仔苗不久,尚未達到市場販售的標準,所以皆無採收。基於養殖戸的經 驗,幼苗需 3-6 個月始可採收販賣,因此最快要到下一季才有可能採收。

2.13 海象調查

1.海域溫度與鹽度縱深剖面調查

海域溫度與鹽度之調查,係於三貂灣海域水深 5 公尺至 60 公尺間,佈置間隔 600 公尺×600 公尺或 1200 公尺×1200 公尺之網點測站,測量水體縱深剖面之溫度及鹽度變化情況,以瞭解核能四廠附近海域不同深度之溫鹽分佈,本季調查時間爲民國 88 年 7 月 28 日、8 月 11 日及 9 月 27 日,各次調查測站位置及各測站 CTD 調查剖面圖,詳見附錄 V 8-1~ V 8-3,調查結果整理說明如下:

根據7月28日的CTD調查結果顯示,各測站之表層水溫均約在27.9 °C~28.7°C之間,測站彼此間的差異很小,且於水層垂直水溫分佈亦無明顯之斜溫層出現。在鹽度調查方面,各測站表層鹽度約在32.95~34.8PSU左右,大部分測站彼此間差距不大;至於水層垂直鹽度分佈方面,各測站之表層與底層之鹽度差異亦不大,顯示此區域之水體混合狀況大致良好。

8月11日之監測,由於觀測現場流況不佳,此月份溫鹽剖面量測,在下列九個外測點無法取得海水深層之溫鹽值:F4、F6、F8、F10、D6、D8、D10、B6及B10。根據此月份其餘CTD調查結果,各測站表層水溫約在27.3~28.2℃左右,測站彼此間差異不大,在水層垂直水溫分佈方面,於測站A10、B10及F8等有明顯之斜溫層出現,其上下層之溫差大約在3.3~3.8℃左右。在鹽度調查方面,各測站表層鹽度約介於33.6~33.7PSU,各測站間之差異不大;至於水層垂直鹽度分佈方面,各測站之表層與底層之鹽度差異亦不大,顯示此區域之水體混合狀況良好。

根據9月29日的CTD調查結果,各測站表層水溫約在24.5~25.3℃左右,測站彼此間差異不大;上下水層之溫差除F10測站出現3.5℃外,多小於2.0℃。在鹽度調查方面,各測站表層鹽度約介於32.60~34.01PSU,大部分測站間之差異很小;至於水層垂直鹽度分佈方面,各測站之表層與底層之鹽度差異不大,顯示此區域之水體混合狀況良好。

2.漂流浮標追蹤

本季此項調查係於88年7月29日、8月12日及9月28日進行觀測,追蹤水面表層以下1公尺及5公尺處之漂流行為,以瞭解海面表層之綜合效應。各次浮標漂流調查之施放位置、施測時間、當日之風速、風向及浮標漂流軌跡,如圖2.13-1~2.13-3所示,各次浮標施放位置之考量,主要係比較鹽寮灣內外流向與流速之差別,及核能四廠進、出水口附近海域之流況進行調查。

根據7月29日之調查結果(圖2.13-1),當時之潮汐狀況爲退潮再至 漲潮階段,浮標1、2及3號均於8:08~8:20退潮時由鹽寮灣澳底港至進水 口間之東方外海開始施放,當時之風向爲大約1.4m/sec的西風,此三浮 標施放初期大致往北漂流,於9:37~9:45間轉往東北方漂移,其水面下1 公尺(1、2號)及5公尺(3號)之平均流速分別爲37.1~55.0cm/sec及 50.2cm/sec。浮標4、5及6號於10:39~10:46左右施放,受退潮影響往東南 方向漂移。稍後浮標於12:45~13:41受漲潮影響轉往北北西及東方漂流, 而浮標6號於13:36已漂至外海,故未續測。其水面下1公尺(4、5號)及 5公尺(6號)之平均流速分別爲15.5~22.1cm/sec及29.5cm/sec。

8月12日之調查結果如圖2.13-2所示,此時之流況爲退潮-平潮-漲潮階段,浮標1、2、3號分別於8:59~9:09之間由鹽寮灣進水口東方外海開始施放,此時潮汐狀況爲退潮,而風向爲大約在0.6m/sec的東南風,浮標施放後初期均受退潮及風向影響往東南或南南東方向漂流。浮標1號於12:01左右轉爲北及東北方向漂流,大致平行鹽寮灣沿岸地形;而浮

標2、3號於漲潮時已漂至外海,故未續測。浮標4號於12:46施放,大致沿北北西及北方漂流。此四浮標在水面下1公尺之平均流速分別為26.8cm/sec(1號)及32.9cm/sec(2號),水面下5公尺之平均流速約39.6~49.1cm/sec(3、4號)。

9月28日調查之4支浮標漂流軌跡如圖2.13-3所示,觀測時之潮汐變化為漲潮-退潮-平潮階段,浮標1、2及3號分別於7:53~8:03之間由進出水口間之東方外海開始施放,此時潮汐狀況為漲潮,而風向為大約1.5m/sec的東風,施放後受漲潮影響往北及西北方漂流,浮標1、3號至9:03~9:53左右受退潮影響轉向南及西南方向漂流,而浮標2號於9:35左右已漂出鹽寮灣區域,故未續測;其在水面下1公尺之平均流速分別為11.4cm/sec(1號)及52.9cm/sec(2號),水面下5公尺平均流速約19.6cm/sec(3號)。浮標4號於10:19施放,受退潮影響往南漂流,至14:00平潮時轉向西方漂流,其水面下1公尺平均流速為13.0cm/sec。

綜合本季調查發現,僅7月進行漂流浮標追蹤調查時,浮標1、2及3 號於退潮時施放出現往北方向漂流情形,惟大體而言,各浮標仍維持漲 潮北或西北流,退潮南或東南流之流況型態,至於浮標之平均流速則呈 鹽寮灣內流速較鹽寮灣外流速爲低的情形。

3.沿岸潮位及水温調查

本季沿岸潮汐及水溫調查逐時記錄詳見附錄 N 8-4~ N 8-9及圖 2.13-4,沿岸潮汐調查結果則整理如表 2.13-1所示;本區潮汐係以半日潮爲主,本季平均潮位約在 29~32公分(相對於基隆港平均海平面),平均潮差約51~56公分左右,就台灣地區而言,屬潮差較小之區域。另外,本季最高潮位發生於 9月 23日 3時 40分,潮位高爲 88公分。

在沿岸水溫之調查方面,本季於鹽寮水溫測站測得水深一公尺處之

平均水溫介於 27.2° C \sim 28.4° C 之間,因本季爲夏候,故測得之平均水溫 較前一季之平均水溫 22.0° C \sim 26.8° C 爲高。

2.14 景觀與游憩活動調查

1.遊客人數實地調查

本季遊客人數實地調查係於 7 月至 9 月每月各進行兩天,調查時間 及結果整理如表 2.14-1,並分析如下:

本季已進入夏季,東北角之氣候轉好,故前往福隆海水浴場遊玩的遊客有漸漸增加趨勢。本季假日與非假日之遊客數呈現明顯假日較非假日遊客數明顯爲高的相對關係;7月25日、8月8日爲假日,調查時天氣爲晴天,致遊客數在千人次以上,7月17日雖爲非假日,但因天氣和暖,遊客數亦在千人次以上;9月份調查時間爲4、5日,因值學校暑假結束,遊客數有減少情形,其遊客數在三百至五百多人次之間。

鹽寮海濱公園因受到 85 年 7 月底賀伯颱風侵襲,造成園內設施破壞以致迄今仍然關閉,其對遊客統計數有不小之影響,大部分在此停留之遊客多爲路過東北角地區,在此稍作休息的遊客。本季遊客數介於268~1,791 人次,以假日遊客數較多。

由於福隆海水浴場自86年6月份始重新開放,故吸引不少遊客前來遊玩,加上本季氣候逐漸轉熱,適合遊客外出散心,故遊客人數較上季(4~6月)明顯增加,而鹽寮海濱公園自受到去年7月31日賀伯颱風之破壞後,迄今仍關閉進行整修,遊客人數受關閉因素並不多。

2. 門票數調查

本季由於鹽寮海濱公園仍因整修施工無法開放營業,本季並無門票 數資料;福隆海水浴場於86年6月7日重新正式開幕,吸引不少遊客前 來遊玩,本季7~9月因值夏季天氣回暖,致購票入場人數較上季 (5,498~11,631人次)減多,爲7,605~19,812人。另86年第三季新增之 龍門渡假中心,爲一露營、烤肉區,主要遊客來源爲機關團體舉辦之休閒活動,本季 7~9 月亦因天氣逐漸回暖之故,致遊客人數較上一季增加,爲 4,381~9,195 人,其中非假日之平均遊客人數爲數十人至一百次左右,假日之平均遊客人數則在數百至千人次以上;其門票數調查如表 2.14-2 所示。

3.景觀品質調查

有關本計畫景觀品質之評分方式,主要係考量本計畫性質爲工程開發,對原環境造成之景觀影響首先爲景觀破壞部份,之後則爲環境復育對已破壞之改善程度,因此本計畫景觀品質之評分方式,將以自然完整性(分爲景觀破壞及景觀美化兩部分)進行評比(評分方式詳附錄 II.13 所述),各觀景點之調查照片整理如照片 2.14-1~2.14-9,,其詳細評分如表 2.14-3 所示,以下就各觀景點之景觀品質現況說明如后。

(1) 一號觀景點:

在一號觀景點附近,自 85 年 6 月份起場址周圍道路擴寬並沿石碇 溪沿岸進行整地植栽綠化工程,原本於周圍圍籬上之爬藤植物及道路 兩側之雜草均被清除,並栽種新的觀賞性植物取而代之(詳照片 2.14-1),從一號觀景點望去可看見廠區內之房舍,由於其僅一層樓, 且廠區周圍有綠樹遮掩,故對當地之景觀並不致造成太突兀之視覺影響,本處因觀景距離與植栽處很近,在觀景距離評分上較低外,其餘 之分數皆在 3~5 分,近來更由於道路側及圍籬上之植栽綠化已顯成效, 致整體評分提高為 34 分,日後栽種植物之長高後,是良好之自然圍籬, 可阻隔廠區內外,將對景觀有正面助益。

(2)二號觀景點:

二號觀景點附近,於 86 年 2 月進行台 2 省道旁之景觀綠化工程,拆除原有零亂之廣告看板,景觀逐漸改善,惟由台 2 省道往廠區望去,仍可見廠區內搭建之房舍,由於僅可見房舍之上半部,且其改變面積部份所佔景觀視野面積之比例不大,故整體景觀上並未有太大影響,未來藉由廠區周界之綠樹遮掩作用,將可提升本觀景點之景觀品質。本季評分結果與上季相同,仍維持為 34 分(詳照片 2.14-2)。

(3)三號觀景點:

在三號觀景點中,可見遠處之邊坡平台,由於其植栽綠化已多年,綠化成效甚明顯,然而其因地形因素僅能種植草,與周圍植物之形態不同,故仍可分辨其形狀位置。由於本處在改變類別、土壤與環境對比程度等方面評分爲中等,雖然已做美綠化工作但因改變型態較多,故其評分僅有 26 分;7~9 三個月份所觀測之景緻所見並無太大的差別,其評分結果仍維持在 26 分。

(4)四號觀景點

從第四景觀點(詳照片 2.14-4)向核四廠區望去,可見數廠區內操作之大型機具,在整體評分上因受改變面積,立地再被覆性之評分較低而影響分數,自 88 年 2 月份起於 1 號機廠址附近出現許多大型吊車,施工作業更加頻繁,使美化材料與自然配合度方面之評分降低,評分結果爲 20 分。

(5)五號觀景點

本觀景點爲 85 年第四季新增之點,其照相方式詳圖 1.4-11,分別三方向,在北向及南向目前在景觀上尚未因核四工程而遭致破壞或改變(詳照片 2.14-5~照片 2.14-7),而在西向可隱約看到核四廠區內之平台,與第三號觀景點相似,惟觀景距離及土壤與環境對比程度不

同,故其評分略較第三號觀景點爲高,爲 28 分。而北向自今年於 6 月 起因重件碼頭工程重新動工,現場可隱約見到起重機作業進行,在景 觀美化方面之品質略受影響,然因受影響範圍不大,評分爲 30 分,仍 屬高自然完整性。

(6) 六號觀景點

本觀景點爲 85 年第四季新增之點,目前在景觀上尚未因核四工程 而遭致破壞或改變(詳照片 2.14-8)。

(7)七號觀景點

本觀景點亦爲 85 年第四季新增之點,目前在景觀上尚未因核四工程而遭致破壞或改變(詳照片 2.14-9)。

表 2.14-3 之評分表係針對景觀之破壞及美化程度予以評定,其中因五號之南北向、六號、七號觀景點由於尚無任何因工程之破壞而造成景觀之改變,因此暫不予以評分。七個觀景點中之一號觀景點因核四之房舍及之前所進行廠區周圍石碇溪沿岸整地綠化工程,景觀初期受影響,目前則逐漸改善中;二號觀景點因台 2 省道旁建構圍籬、植栽綠化及廠內房舍搭建,景觀亦稍有變化;三號觀景點本季綠化效果與上季並無明顯變化,平均得分數相近,均屬中自然完整性;四號觀景點因工程加大,可見到場內大型機具施作,評分略微降低;五號西向之觀景點評分略高於三號,屬高自然完整性。整體而言,總評分以一號及二號觀景點較高(高等自然完整性),其餘三、四及五號觀景點則爲中等自然完整性。

2.15 海域漂砂

1. 樣品分析結果

本季調查係於 88 年 8 月 19 日進行海域採樣,共取得海域 60 個水樣及 20 個底質樣品(其中只有 10 個樣品含有砂量,如表 2.15-1 所示);另於 8 月 19 日進行海灘採樣,共計採得 10 個海灘砂樣(其中 1 個點位底質爲岩礁,故無砂樣),如表 2.15-2 所示。

海域水樣之篩選分析結果如表 2.15-3,由於其含砂量甚少,故無法進行顆粒分析及比重試驗。另有關海域底質及海灘樣品物理分析結果,如附錄 IV.9 所示,其採樣站累積百分比 50% 粒徑資料及等值線則如圖 2.15-1 及圖 2.15-2 所示。

2. 漂砂移動趨勢

海域受波浪作用時,海底之水平流速因水深變化而異,水深較大處流速較小,而水淺處流速較大,同時在淺水域中之波形變爲不對稱,波峰出現時流速大,而波谷出現時流速小,因此水粒子前進之加速度較後退加速度大,故前進時將粒徑較大之砂粒推向岸邊,後退時由於部份粒徑較大之砂粒仍停留在原地,因此原來包含各種大小粒徑之底質將重新調整,各種粒徑之砂粒移動至適當之水深後停止移動,此種現象稱爲篩分作用(Sorting Action)。因此形成同一地點之粒徑大致相同,淺水處粗粒料所佔之成份較多,靠近破碎點之中值粒徑愈大,愈向外海則中值粒徑愈細;粒度由大而小的遞減方向,可視爲漂砂前進方向。

基於上述原理,本調查工作將分析所得之底層中直粒徑繪製成一等 值曲線圖(圖 2.15-2),圖中等值線之法線方向應爲漂砂經常(強勢)方向, 等值之斜度可顯示漂砂移動之傾向,而各法線之交點應可視爲砂源點。 以本調查區域而言,於靠近雙溪出海口之中值粒徑爲 379.0 μ m,而愈往 外海方向則中值粒徑值愈小,於採樣點 16 之中值粒徑僅為 192.5 μ m ° 而往北方向因沿岸流及波浪之影響,其灘線採樣點之中值粒徑往北遞減,於灘線採樣點 3 之中值粒徑為 256.2 μ m °

由上述推測主要砂源應爲雙溪溪口,其漂砂方向主要爲往北方向進行,愈往東北受砂源之影響愈小,在鹽寮海濱公園以北幾乎不受砂源之影響,在鹽寮海濱公園以南水深 10 公尺以上幾乎不受砂源之影響,而東南側之影響則僅達挖子港東北方。

表2.1-1 核四施工環境監測風速與風向本季觀測結果

	類	別	平均風速 (m/sec)	盛行風向	所佔百分比(%)
		低塔63公尺	2.5	西 風	12.37
	7	低塔21公尺	2.0	西北風	16.40
	月	高塔93公尺	*	*	*
00		高塔63公尺	*	*	*
88 Æ		低塔63公尺	2.8	南 風	13.44
年第	8	低塔21公尺	2.2	西北風	13.31
第 二	月	高塔93公尺	*	*	*
第三季		高塔63公尺	*	*	*
		低塔63公尺	4.2	東 南 風	12.87
	9	低塔21公尺	2.9	北北西風	15.82
	月	高塔93公尺	4.6	北北西風	13.74
		高塔63公尺	3.6	北北西風	12.99
		低塔63公尺	3.6	南 風	-
	7	低塔21公尺	2.8	南 風	-
	月	高塔93公尺	3.5	南 風	-
		高塔63公尺	2.8	西南風	-
87		低塔63公尺	3.5	南 風	-
年	8	低塔21公尺	2.6	西北風	-
同	月	高塔93公尺	4.0	南 風	-
期		高塔63公尺	2.8	西南風	-
		低塔63公尺	3.8	北北東風	-
	9	低塔21公尺	2.7	北北西風	-
	月	高塔93公尺	4.6	北風	-
		高塔63公尺	3.1	西南風	-
		低塔63公尺	3.5	南 風	-
	7	低塔21公尺	2.7	南 風	-
	月	高塔93公尺	3.9	南 風	-
		高塔63公尺	3.0	南 風	-
歷		低塔63公尺	3.8	南 風	-
	8	低塔21公尺	2.7	西北風	-
	月	高塔93公尺	4.2	南南東風	-
年		高塔63公尺	3.2	西南風	-
		低塔63公尺	4.5	北北東風	-
	9	低塔21公尺	3.1	北北東風	-
	月	高塔93公尺	4.8	北風	-
		高塔63公尺	3.7	北北東風	-

註:(1)歷年測值資料來源爲台電電源勘測隊民國86年水文氣象年表。

⁽²⁾低塔21公尺之歷年資料統計時間自民國69年7月至86年12月,其他之歷年資料統計時間自民國71年9月至86年12月。

^{(3) ***} 代表因6/18~9/15高塔受雷擊影響,無法進行監測。

表2.1-2 核四施工環境監測氣溫本季觀測結果

日期	88年7月	88年8月	88年9月
1	28.4	28.2	27.4
2	27.9	28.3	26.8
3	28.4	28.0	26.6
4	27.8	27.8	28.5
5	26.7	27.4	-
6	28.0	26.9	-
7	27.4	25.6	-
8	27.2	28.4	27.1
9	27.9	28.6	27.7
10	27.8	28.8	27.6
11	28.7	26.9	27.8
12	27.5	26.5	28.5
13	27.5	27.1	27.9
14	27.2	28.0	27.2
15	26.8	27.9	26.9
16	27.3	28.5	26.7
17	27.1	28.1	27.0
18	28.4	28.8	26.4
19	27.9	28.4	26.4
20	28.5	28.0	26.7
21	28.9	27.6	23.7
22	28.8	28.5	24.0
23	28.7	27.9	23.8
24	28.7	27.8	23.0
25	27.9	27.7	24.4
26	27.9	28.2	26.1
27	27.7	27.4	26.9
28	27.9	27.7	26.8
29	27.6	27.1	26.3
30	27.8	27.1	25.8
31	27.9	27.6	-
月平均	27.9	27.8	26.4
歷年同期平均	28.1	27.8	25.9
87年 同 期	29.4	29.1	25.9

註:(1)單位爲℃。

(2)歷年平均資料來源爲台電電源勘測隊86年水文氣象年表,資料統計時間自民國69年7月至86年12月。

表2.1-3 核四施工環境監測露點溫度本季觀測結果

月份日期	88年7月	88年8月	88年9月
1	23.0	23.6	23.3
2	23.4	23.1	23.4
3	23.4	24.2	23.8
4	23.2	24.4	24.0
5	23.2	24.4	-
6	22.7	24.2	-
7	23.1	23.4	-
8	23.1	22.7	24.5
9	22.7	24.4	23.7
10	22.5	24.2	23.4
11	21.9	23.6	23.8
12	22.5	23.6	24.6
13	23.3	23.5	24.8
14	23.2	23.9	24.4
15	22.9	24.3	24.0
16	23.0	23.7	23.9
17	23.4	24.0	23.7
18	22.7	23.6	23.0
19	23.3	23.2	22.9
20	24.0	23.1	23.2
21	23.7	23.9	21.4
22	24.1	23.6	19.0
23	24.0	23.3	18.9
24	23.9	23.3	19.1
25	23.9	23.2	20.1
26	23.1	23.4	22.8
27	23.3	23.1	23.7
28	23.3	23.2	24.1
29	24.0	22.9	23.4
30	24.0	22.9	23.5
31	24.0	23.1	-
月平均	23.3	23.6	23.0
歴年同期平均	24.0	23.3	21.6
87年 同 期	26.0	25.9	23.0

註:(1)單位爲℃。

(2)歷年平均值資料來源爲台電電源勘測隊民國86年水文氣象年表,其資料統計時間自民國83年7月至86年 $12月 \circ$

表2.1-4 核四施工環境監測相對濕度本季觀測結果

月份日期	88年7月	88年8月	88年9月
1	74.7	77.2	78.7
2	77.0	74.1	82.0
3	74.6	80.7	84.5
4	76.6	82.5	76.9
5	81.6	84.1	-
6	73.4	85.1	-
7	77.8	87.7	-
8	78.7	72.0	86.0
9	74.1	78.8	79.5
10	73.4	76.9	79.0
11	67.3	82.6	79.6
12	74.9	84.7	79.9
13	78.3	81.2	83.4
14	79.5	78.6	85.0
15	79.5	81.1	84.5
16	78.0	76.2	84.8
17	80.6	79.2	82.7
18	72.4	74.6	82.2
19	76.6	74.2	81.5
20	77.0	75.6	81.5
21	74.2	80.6	87.5
22	76.2	75.0	74.3
23	76.1	76.9	74.4
24	75.1	77.2	80.1
25	79.2	77.3	77.6
26	75.9	75.8	82.2
27	77.2	78.0	82.4
28	76.0	77.5	85.4
29	81.2	78.6	84.6
30	79.8	79.0	87.2
31	79.8	77.4	-
月平均	76.7	78.7	81.8
歷年同期平均	80.8	81.3	83.7
87 年 同 期	83.1	85.0	83.7

註:(1)單位爲%。

⁽²⁾歷年同期平均資料來源爲台電電源勘測隊86年水文氣象年表,資料統計時間自民國69年7月至86年12月 \circ

表2.1-5 巴斯魁爾(Pasquill)穩定度分類法

大氣穩定度分類	巴斯魁爾	風向角標準差	垂直溫度梯度
極不穩定	A	≥22.5°	<-1.9
中程度不穩定	В	17.5° ~22.4°	-1.9~-1.7
微不穩定	С	12.5° ~17.4°	-1.7~-1.5
中性	D	7.5° ~12.4°	-1.5~-0.5
微穩定	Е	3.8° ~7.4°	-0.5~1.5
中程度穩定	F	1.3° ~3.7°	1.5~4.0
極 穩 定	G	<1.3°	>4.0

註:垂直溫度梯度之單位爲℃/100公尺。

表2.1-6 核四施工環境監測大氣穩定度本季機率分佈統計表

		等級	A	В	С	D	Е	F	G
00	7 月	低塔氣象塔	4.17	1.48	2.96	30.11	39.38	20.03	1.88
88 年 第	8 月	低塔氣象塔	3.76	2.55	2.96	27.55	37.37	20.70	5.11
第 二 季	9	低塔氣象塔	3.10	2.64	4.19	26.05	44.81	15.19	4.03
Ť	月	高塔氣象塔	12.72	2.54	2.29	13.74	47.84	13.99	6.87
	7	低塔氣象塔	10.48	3.90	6.59	27.42	31.59	15.32	4.70
	月	高塔氣象塔	22.04	4.03	3.63	15.19	32.53	14.65	7.93
87 年	8	低塔氣象塔	12.23	4.70	3.49	25.40	31.05	19.89	3.23
同期	月	高塔氣象塔	24.46	2.28	2.55	16.13	36.29	12.90	5.38
	9	低塔氣象塔	1.25	2.22	2.64	21.67	44.72	16.53	10.97
	月	高塔氣象塔	13.19	1.81	1.39	16.67	44.44	17.22	5.28
	7	低塔氣象塔	17.49	2.85	2.08	24.81	31.92	16.47	4.40
	月	高塔氣象塔	20.23	2.80	3.36	24.96	32.76	11.91	3.99
歷	8	低塔氣象塔	11.57	3.21	4.10	33.20	32.13	13.46	2.35
年	月	高塔氣象塔	16.56	1.93	2.28	24.16	37.56	14.28	3.17
	9	低塔氣象塔	7.01	3.17	3.60	33.71	35.47	12.43	4.62
	月	高塔氣象塔	16.91	2.22	2.92	26.20	37.69	10.67	3.39

註:1.各穩定度等級機率以%表示。

- 2.本表之大氣穩定度係依垂直溫度梯度推算而得。
- 3.歷年統計值係摘錄自「核能四廠發電工程施工期間環境監測」報告,其資料統計時間自民國82年8月至86年12月。
- 4.7、8月因高塔受雷擊影響,故無測值。

表2.1-7 核四施工環境監測日射量本季觀測結果

單位: cal/cm²

					単位·Cal/CIII				
月份	88年	三7月	88年		88年				
日期	日累積量	日最大値 (發生時間)	日累積量	日最大値 (發生時間)	日累積量	日最大値 (發生時間)			
1	493.2	82.1(13)	284.5	77.7(13)	516.3	74.4(12)			
2	500.3	78.2(12)	250.8	56.5(13)	417.4	66.9(11)			
3	588.9	79.7(12)	399.9	72.3(11)	54.8	17.3(11)			
4	314.8	61.9(10)	393.1	74.5(14)	369.1	71.1(14)			
5	278.4	58.0(11)	521.8	80.3(13)	ı	-			
6	401.9	70.8(12)	241.7	65.2(11)	-	-			
7	411.5	64.7(14)	101.6	20.2(08)	-	-			
8	348.7	74.8(12)	496.2	79.8(13)	-	0.4(19)			
9	269.7	57.8(12)	479.6	78.3(12)	391.8	63.9(13)			
10	213.4	48.1(09)	500.0	77.5(13)	471.0	67.8(11)			
11	273.0	44.1(14)	261.3	50.6(14)	535.3	74.7(13)			
12	152.1	35.2(14)	299.3	84.8(12)	457.4	69.3(11)			
13	351.2	61.9(12)	308.2	50.0(09)	379.7	58.0(11)			
14	406.2	67.3(12)	565.1	77.8(13)	321.1	54.4(11)			
15	318.4	66.6(11)	421.7	73.2(12)	355.9	65.9(12)			
16	269.1	53.1(10)	567.4	78.3(13)	275.9	62.2(11)			
17	423.9	77.1(12)	533.3	75.1(13)	322.4	69.4(13)			
18	488.1	80.7(12)	586.6	78.5(12)	503.6	73.3(13)			
19	380.9	78.0(13)	562.7	77.7(13)	456.3	67.7(13)			
20	396.4	66.4(12)	430.3	75.9(11)	121.8	30.0(14)			
21	545.4	80.5(13)	311.0	50.8(11)	15.8	4.5(11)			
22	362.5	52.4(11)	484.0	72.4(14)	92.2	16.0(14)			
23	384.3	68.6(14)	498.3	78.3(12)	339.9	62.2(13)			
24	516.7	77.9(13)	414.8	69.7(12)	433.9	60.6(12)			
25	364.0	83.0(13)	400.7	77.7(11)	82.7	20.0(13)			
26	267.2	73.3(13)	446.9	74.7(11)	197.5	34.5(14)			
27	415.7	70.0(14)	441.6	71.5(13)	284.9	50.4(14)			
28	220.4	39.7(11)	533.7	81.1(12)	380.1	70.0(13)			
29	100.7	27.8(14)	411.6	76.3(12)	391.7	73.3(13)			
30	320.0	77.5(14)	491.6	80.3(13)	379.1	71.4(13)			
31	612.4	79.4(13)	482.0	77.8(12)	-	-			
月平均値	36	7.4	43	2.8	328.8				
歷年同期月平均值	47	8.1	44	5.5	340.4				
87年同期月平均値	54	8.7	49	8.2	34	4.3			

註:(1)日最大值發生時間爲"時"。

⁽²⁾歷年平均值資料來源爲台電電源勘測隊民國86年水文氣象年表,其資料統計時間自民國69年7月至86年 12月。

表2.1-8 核四施工環境監測紫外線輻射量本季觀測結果

單位: mcal/cm²

			1		里位:mcal/cm ⁻				
月份	88年	F 7月	88\$	₹8月	88年	F 9月			
日期	日累積量	日最大値 (發生時間)	日累積量	日最大値 (發生時間)	日累積量	日最大値 (發生時間)			
1	15.46	2.62(13)	17.06	2.42(13)	14.73	2.19(12)			
2	14.91	2.46(12)	8.37	1.86(13)	12.90	2.14(11)			
3	16.76	2.39(12)	12.51	2.17(11)	2.45	0.72(11)			
4	9.74	1.79(10)	13.18	2.36(13)	12.47	2.24(14)			
5	8.99	1.81(11)	16.27 2.53(13)		-	-			
6	12.53	2.21(12)	8.23	2.08(11)	-	-			
7	13.53	2.08(14)	3.96	0.69(09)	-	-			
8	11.05	2.23(12)	15.02	2.53(12)	-	0.01(19)			
9	9.00	1.90(12)	14.26	2.45(12)	11.89	2.01(13)			
10	7.53	1.30(09)	14.60	2.38(13)	12.85	1.96(12)			
11	8.79	1.42(14)	8.48	1.66(14)	14.53	2.20(13)			
12	5.32	1.21(14)	9.77	2.59(12)	14.51	2.19(11)			
13	11.17	1.94(11)	9.52	1.49(10)	11.94	1.91(11)			
14	11.64	1.95(12)	16.23 2.43(12		10.89	1.86(11)			
15	9.66	1.85(11)	11.64	2.07(12)	11.11	2.18(12)			
16	8.98	1.67(11)	15.91	2.44(13)	8.37	1.86(11)			
17	13.09	2.45(12)	13.72	2.10(13)	10.06	2.14(13)			
18	15.25	2.53(12)	16.46	2.44(13)	14.17	2.18(13)			
19	11.83	2.42(13)	16.22	2.44(13)	12.49	2.00(13)			
20	13.02	2.16(12)	13.57	2.32(11)	5.07	1.12(14)			
21	16.42	2.45(13)	10.83	1.73(11)	0.69	0.14(11)			
22	11.91	1.88(13)	14.63	2.30(13)	3.82	0.60(14)			
23	12.52	2.22(14)	14.95	2.47(12)	9.72	1.67(13)			
24	15.60	2.49(13)	13.15	2.21(13)	11.19	1.67(12)			
25	12.82	2.79(13)	12.03	2.34(11)	3.43	0.69(13)			
26	8.76	2.29(13)	13.30	2.33(11)	7.05	1.20(14)			
27	12.84	2.22(14)	12.79	2.26(13)	8.80	1.52(14)			
28	7.58	1.37(11)	15.47	2.47(12)	10.75	1.96(13)			
29	3.84	1.02(14)	12.08	2.36(12)	11.23	2.09(13)			
30	10.69	2.44(14)	13.98	2.36(13)	11.10	2.06(13)			
31	18.50	2.55(13)	13.73 2.41(12)		-	-			
月平均値	11	.60	12	2.97	9.93				
歷年同期月平均值	17	7.76	17	'.59	14.19				
87年同期月平均值	20	.70	17	'.57	12	49			

註:(1)日最大值發生時間爲"時"。

⁽²⁾歷年平均值資料來源爲台電電源勘測隊民國86年水文氣象年表,其資料統計時間自民國84年1月至86年12月。

表2.2-1 核四施工環境監測空氣品質88年7~9月監測日期一覽表

	測站	澳底國小	龍門社區	貢寮國小	福隆海水浴場	川島養殖池	石碇宮	貢寮焚化廠
月份	;							入口旁之民宅
		88/7/7 16:00	88/7/18 10:00	88/7/18 14:00	88/7/21 16:00	88/7/4 10:00	88/7/11 10:00	88/7/14 18:00
本	7月	至	至	至	至	至	至	至
季		88/7/10 16:00	88/7/21 10:00	88/7/21 14:00	88/7/24 16:00	88/7/7 10:00	88/7/14 10:00	88/7/17 18:00
監		88/8/11 16:00	88/8/22 10:00	88/8/25 16:00	88/8/28 18:00	88/8/8 10:00	88/8/15 10:00	88/8/18 18:00
測	8月	至	至	至	至	至	至	至
日		88/8/14 16:00	88/8/25 10:00	88/8/28 16:00	88/8/31 18:00	88/8/11 10:00	88/8/18 10:00	88/8/21 18:00
期		88/9/1 18:00	88/9/5 10:00	88/9/18 14:00	88/9/26 18:00	88/9/22 14:00	88/9/25 18:00	88/9/18 16:00
	9月	至	至	至	至	至	至	至
		88/9/4 18:00	88/9/8 10:00	88/9/21 14:00	88/9/29 18:00	88/9/25 14:00	88/9/28 18:00	88/9/21 16:00

註:各測站每月均連續進行三日監測

表2.2-2 核四施工環境監測空氣品質88年7~9月監測綜合結果表

項目	<u>"</u>	训站	澳底	龍門	貢寮	福隆	川島	石碇宮	貢寮焚化廠	空氣品質
			國小	社區	國小	海水浴場	養殖池		入口旁之民宅	標準
TSP	最高24	7月	86	43	48	32	49	92	60	
		8月	55	29	28	29	34	80	41	250
$(\mu g/m^3)$	小時值	9月	40	34	52		69	60	68	
	最高日	7月	20	11	18	15	8	28	25	
NOx		8月	19	17	14	16	12	26	17	無
	平均值	9月	14	13	17		8	17	19	
	最高	7月	32	26	62	35	27	76	51	
(ppb)		8月	 		無					
	小時值 9月 41 19 33 □ 13 32		33							
	最高日	7月	12	6	9	5	6	15	11	
NO_2		8月	11	14	9	10	9	15	7	無
	平均值	9月	6	9	9	П	6	9	10	
	最高	7月	19	13	27	10	18	44	21	
(ppb)		7月 19 13 27 10 18 44 21 8月 29 17 17 14 17 38 13		13	250					
	小時值	9月	14	14	22	П	10	17	17	
	最高	7月	1.0	0.5	0.9	0.8	0.6	0.9	0.9	
СО		8月	0.8	0.6	0.6	0.8	0.7	0.9	0.5	35
	小時值	9月	0.5	0.4	0.8	П	0.6	0.9	0.5	
	最高8	7月	0.7	0.4	0.8	0.5	0.4	0.7	0.9	
(ppm)		8月	0.5	0.4	0.5	0.5	0.5	0.5	0.4	9
	小時值	9月	0.3	0.4	0.7		0.5	0.8	0.4	
	最高日	7月	0.41	0.28	0.37	0.29	0.28	0.26	0.27	
NMHC		8月	0.33	0.24	0.27	0.31	0.23	0.38	0.30	無
	平均值	9月	0.30	0.27	0.39	П	0.35	0.46	0.34	
	最高	7月	0.57	0.37	0.48	0.35	0.47	0.48	0.47	
(ppmc)		8月	0.46	0.26	0.34	0.39	0.29	0.54	0.37	無
	小時值	9月	0.39	0.35	0.52		0.38	0.57	0.38	

註:"匸"表受地震影響,電源中斷

表2.2-3 核四空氣品質88年7~9月監測結果表

(台灣電力公司監測)

項目		測站	澳底站	龍門站	空氣品質 標 準
- 		7月	73.7	59.3	
PM10	最高日值	8月	72.9	57.9	125
		9月	88.0	72.6	1
3.		7 月	157.3	171.0	
$(\mu g/m^3)$	最高小時值	8月	99.2	99.3	無
		9月	116.5	99.6	1
		7月	28.6	13.2	
NOx	最高日值	8月	20.8	12.5	無
1,011		9月	18.0	14.0	1
		7 月	104.2	22.9	
	最高小時值	8月	42.9	26.9	無
(ppb)		9月	46.4	31.3	1 ''''
		7月	10.9	7.4	
NO_2	最高日值	8月	12.3	6.9	無
1102		9月	9.6	8.2	1 ""
		7月	26.2	14.1	
	最高小時值	8月	26.0	18.2	250
(ppb)	-1×1-0 2 42 IE	9月	22.1	20.3	1 230
(PPU)		7月	24.8	7.9	1
	最高日值	8月	10.7	6.0	無
NO	ᅲ	9月	8.8	11.6	,
110		7月 7月	104.1	14.7	
	最高小時值	8月	25.1	14.7	無
(ppb)	표 아마. 다.디지처	9月	37.0	30.4	711
(рро)		7月 7月	0.5	0.4	
	最高小時值	8月	0.4	0.5	35
CO	표 아내 다디 저희	<u>9月</u>	0.4		33
CO		<u> </u>	5.3	0.5 0.5	
	最高8小時值	/月 8月	0.6	0.8	9
(====)	取回0小时阻	<u>9月</u>			4
(ppm)			0.8	0.8	
	最高日值	7月	4.5	3.1	100
202	取问口阻	8月	5.0		100
SO2		9月	4.3	6.7	
	最高小時值	7月	12.1	10.0	250
(1 -)	取回小心阻	8月	12.2	18.5	250
(ppb)		9月	7.8	17.4 2.5	
	最高日值	7月	2.0		無
THO	取问口阻	8月	2.1	2.6	////
THC		9月	2.3	2.5	
	最高小時值	7月	3.1	3.1	無
(n)	取回小心间	8月	3.0	3.7	##
(ppm)		9月	5.0	3.1	
	最高日值	7月 °日	1.9	1.9	無
CLIA	取同口但	8月	2.0	1.9	***
CH4		9月	2.2	1.9	
	最高小時值	7月	2.1	2.1	無
(n)	取回小心间	8月	2.2	2.1	***
(ppm)		9月	6.4	2.1	
	最高日值	7月	30.2	31.6	60
02	取同口阻	8月	32.5	32.3	60
O3		<u>9月</u> 7月	51.0	38.9	
	旦古○小吐佐		91.2	99.9	120
(= 1)	最高8小時值	8月	117.0	96.5	120
(ppb)		9月	86.1	88.0	
	旦古口法	7月	0.2	0.7	₫m
ND GLC	最高日值	8月	0.2	0.7	無
NMHC		9月	0.4	0.7	1
	自古小吐	7月	1.3	1.3	4
	最高小時值	8月	1.2	1.4	無
(ppm)	Ī	9月	3.9	1.6	

註;"*"表示監測結果超出環境空氣品質標準

表2.2-4 核四施工環境監測空氣品質88年7月監測綜合結果表

	監測地點 澳底國小 日程		į	龍門社區			貢寮國小		福	隆海水浴	湯	Л	島養殖	池		石碇宮		貢寮:	焚化廠 <i>7</i> 民宅	、口旁	法規值		
項目	監測結果	第一日	第二日	第三日	第一日	第二日	第三日																
二氧化氮(NO ₂)	日平均值	0.007	0.009	0.012	0.006	0.006	0.003	0.009	0.007	0.003	0.004	0.004	0.005	0.005	0.006	0.005	0.007	0.015	0.012	0.011	0.011	0.009	-
(ppm)	最高小時值	0.014	0.014	0.019	0.013	0.012	0.008	0.027	0.015	0.007	0.010	0.007	0.007	0.009	0.014	0.018	0.011	0.044	0.028	0.019	0.021	0.015	0.25
	日平均值	0.36	0.27	0.61	0.30	0.26	0.27	0.34	0.66	0.27	0.47	0.36	0.42	0.35	0.30	0.35	0.31	0.54	0.50	0.77	0.53	0.61	-
一氧化碳(CO)	最高小時值	0.98	0.49	0.76	0.47	0.43	0.38	0.42	0.90	0.37	0.81	0.75	0.58	0.47	0.53	0.64	0.62	0.89	0.83	0.92	0.89	0.92	35
(ppm)	最高八小時 平均值	0.37	0.23	0.63	0.29	0.24	0.26	0.34	0.73	0.28	0.46	0.31	0.39	0.35	0.29	0.32	0.29	0.54	0.48	0.79	0.50	0.57	9
非甲烷化合物	日平均值	0.31	0.31	0.41	0.28	0.23	0.22	0.37	0.29	0.27	0.23	0.29	0.26	0.23	0.25	0.28	0.26	0.21	0.24	0.25	0.27	0.25	-
(NMHC)(ppmc)	最高小時值	0.57	0.39	0.52	0.37	0.31	0.34	0.48	0.39	0.42	0.35	0.31	0.30	0.34	0.39	0.47	0.35	0.40	0.48	0.35	0.47	0.33	-
TSP(μ g/m ³)	24 小 時值	35	36	86	42	43	30	44	48	34	25	20	32	49	42	43	92	52	57	55	60	59	250

註: (1)"-"表示無法規標準參考

表2.2-5 核四施工環境監測空氣品質88年8月監測綜合結果表

	監測地點	;	奧底國小	١	ì	龍門社區	<u> </u>	j	貢寮國小	١	福	隆海水浴	湯	JI	島養殖	池		石碇宮		貢寮?	焚化廠入	、口旁	法規值
	口性					ı	ı								ı						民宅		
項目	監測結果	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	
二氧化氮(NO ₂)	日平均值	0.009	0.007	0.011	0.010	0.013	0.014	0.002	0.003	0.009	0.010	0.007	0.007	0.008	0.009	0.006	0.011	0.012	0.015	0.007	0.003	0.002	-
(ppm)	最高小時值	0.016	0.012	0.029	0.014	0.016	0.017	0.004	0.006	0.017	0.014	0.011	0.010	0.015	0.017	0.010	0.024	0.037	0.038	0.013	0.005	0.003	0.25
	日平均值	0.37	0.31	0.36	0.25	0.32	0.39	0.32	0.33	0.38	0.43	0.29	0.40	0.40	0.34	0.29	0.30	0.38	0.41	0.35	0.37	0.38	-
一氧化碳(CO)	最高小時值	0.81	0.51	0.79	0.35	0.53	0.56	0.41	0.56	0.61	0.77	0.45	0.61	0.52	0.66	0.67	0.56	0.85	0.62	0.43	0.41	0.50	35
(ppm)	最高八小時 平均值	0.37	0.29	0.34	0.25	0.32	0.39	0.32	0.32	0.35	0.44	0.26	0.38	0.39	0.31	0.26	0.28	0.35	0.39	0.36	0.37	0.37	9
非甲烷化合物	日平均值	0.33	0.31	0.26	0.22	0.24	0.22	0.26	0.26	0.27	0.31	0.27	0.27	0.17	0.22	0.23	0.38	0.36	0.35	0.30	0.30	0.28	-
(NMHC)(ppmc)	最高小時值	0.46	0.35	0.30	0.24	0.26	0.25	0.34	0.30	0.33	0.39	0.31	0.32	0.21	0.29	0.28	0.49	0.49	0.54	0.37	0.34	0.34	-
TSP(μ g/m ³)	24小時值	38	55	44	29	24	22	20	26	28	29	25	23	33	34	33	58	74	80	41	36	30	250

註: (1)"-"表示無法規標準參考

表2.2-6 核四施工環境監測空氣品質88年9月監測綜合結果表

	監測地點	ì	奧底國小	\	į	龍門社區	<u> </u>	j	貢寮國小	\	福	逢海水 浴	湯	Л	島養殖	池		石碇宮		貢寮:	焚化廠力	、口旁	法規值
	日程		I	ı					I	ı					ı	I			I		民宅		
項目	監測結果	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	第一日	第二日	第三日	
二氧化氮(NO ₂)	日平均值	0.006	0.003	0.003	0.004	0.009	0.006	0.009	0.009	0.005	□	С	⊏	0.005	0.005	0.006	0.009	0.007	⊏	0.010	0.010	0.003	-
(ppm)	最高小時值	0.014	0.004	0.005	0.010	0.014	0.011	0.019	0.022	0.006	С	_	С	0.010	0.007	0.010	0.017	0.012	С	0.017	0.017	0.004	0.25
	日平均值	0.27	0.23	0.25	0.25	0.27	0.23	0.45	0.49	0.45	С	С	С	0.25	0.44	0.36	0.52	0.64	С	0.21	0.34	0.23	-
一氧化碳(CO)	最高小時值	0.44	0.39	0.51	0.38	0.44	0.31	0.84	0.70	0.56	С	С	С	0.47	0.63	0.45	0.86	0.74	С	0.47	0.49	0.26	35
(ppm)	最高八小時 平均值	0.26	0.24	0.23	0.23	0.24	0.23	0.41	0.44	0.48	С	С	С	0.24	0.44	0.35	0.50	0.66	С	0.17	0.33	0.23	9
非甲烷化合物	日平均值	0.30	0.29	0.25	0.24	0.27	0.24	0.36	0.39	0.36	С	С	С	0.31	0.35	0.35	0.46	0.44	С	0.21	0.34	0.30	-
(NMHC)(ppmc)	最高小時值	0.39	0.34	0.32	0.28	0.35	0.28	0.45	0.52	0.41	С	С	С	0.35	0.36	0.38	0.57	0.48	С	0.35	0.38	0.34	-
TSP(μ g/m ³)	24 小時值	30	40	36	26	34	21	52	45	39				63	61	69	50	60	⊏	68	53	60	250

註:

(1)"-"表示無法規標準參考

(2)"□"表受地震影響,電源中斷,測值無效。

表 2.3-1 核四施工環境監測本季 6 月份噪音監測成果統計表

單位:dB(A)

環境音量標準第三類管制	品	L _早	L _目	L _晚	L _夜
內緊鄰8公尺(含)以上這	-	75 (73)	76 (75)	75 (73)	73 (70)
		· · ·	, í	, í	, ,
┃ 1.台2省道與102甲縣道交叉口	非假日	71.3	72.6	71.1	69.7
1.0 2 自追兴 102 中林追义人口	假 日	72.4	73.5	72.0	71.9
環境音量標準第二類管制	品	L _早	L _目	L _晚	L _夜
內緊鄰8公尺(含)以上道	70	74	70	67	
	(66)	(69)	(66)	(62)	
2.鹽寮海濱公園	非假日	68.1	71.1	69.6	68.7*
2.盖泉/4/食力图	假 日	67.8	69.7	68.6	67.3*
3.福隆街上	非假日	69.1	72.7	69.9	68.5*
3・小田P生は 土	假 日	67.3	70.6	69.7	67.5*
4.102 縣道之新社橋	非假日	54.8	60.1	56.3	56.9
4.102 採退之利性備	假日	58.2	60.4	57.3	57.2
環境音量標準		L _早	L _目	L _晚	L _夜
一般地區第二類管制區	55	60	55	50	
5.過港部落	非假日	56.2*	58.0	54.6	54.8*
· · · · · · · · · · · · · · · · · · ·	假 日	56.0*	60.8*	57.1*	55.8*

註:1.L_早: 5:00 - 7:00 L_日: 7:00 - 20:00

- 2.表中數值爲道路交通噪音改善依據之環境音量標準。
- 3.()內數值爲道路交通噪音經改善後應符合之標準。
- 4. * 表超出道路交通噪音或一般地區噪音之標準值 ○
- 5.噪音管制區劃分係依台北縣政府於87年8月最新公告內容爲依據。
- 6.環境音量標準係引用環保署於民國 85 年 1 月 31 日所公告之「環境音量標準」。
- 7.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年 6 月 27、28 日;102 縣道之新社橋、過港部落等二測站為88 年7月4、5日。

表 2.3-2 核四施工環境監測本季 7 月份噪音監測成果統計表

單位: dB(A)

環境音量標準第三類管制	區	L _早	L _目	L _晚	L _夜
內緊鄰8公尺(含)以上道	-	75	76	75	73
	<u> </u>	(73)	(75)	(73)	(70)
1.台 2 省道與 102 甲縣道交叉口	非假日	72.5	73.9	72.3	69.0
1.6 2 自追與 102 中林道文文口	假 日	71.6	74.3	73.4	72.8
環境音量標準第二類管制	品	L _早	L _目	L _晚	L _夜
內緊鄰8公尺(含)以上這	70 (66)	74 (69)	70 (66)	67 (62)	
	非假日	68.2	72.7	71.0*	69.8*
2.鹽寮海濱公園	假 日	68.8	70.0	66.2	68.2*
3.福隆街上	非假日	70.3*	72.9	69.8	69.0*
3・小田 P笙 (#J ユ_	假日	67.4	70.6	70.2*	68.0*
4.102 縣道之新社橋	非假日	53.4	61.9	57.3	59.9
11.102 小小人旦人と外川小上川日	假 日	63.1	63.4	62.1	60.9
環境音量標準		L _早	L _目	L _晚	L _夜
一般地區第二類管制區	55	60	55	50	
5.過港部落	非假日	58.4*	60.6*	57.0*	57.7*
~ . X3. C HP/G	假 日	60.1*	64.2*	60.7*	59.7*

註:1.L_里: 5:00 - 7:00 L_日: 7:00 - 20:00

- 2.表中數值爲道路交通噪音改善依據之環境音量標準。
- 3.()內數值爲道路交通噪音經改善後應符合之標準。
- 4.* 表超出道路交通噪音或一般地區噪音之標準值。
- 5.噪音管制區劃分係依台北縣政府於87年8月最新公告內容爲依據。
- 6.環境音量標準係引用環保署於民國 85 年 1 月 31 日所公告之「環境音量標準」○
- 7.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年 7 月 20、31 日;102 縣道之新社橋、過港部落等二測站為88 年 7 月 21 日、88 年 8 月 1 日。

表 2.3-3 核四施工環境監測本季 8 月份噪音監測成果統計表

單位: dB(A)

環境音量標準第三類管制	品		L _早	L	L _晚	L _夜
內緊鄰8公尺(含)以上道	-		75	76	75	73
			(73)	(75)	(73)	(70)
1.台 2 省道與 102 甲縣道交叉口	非假	日	68.4	70.7	68.9	68.4
11.日 2 自追與 102 中标道文文目	假	日	70.6	71.4	68.9	70.4
環境音量標準第二類管制	品		L _早	L _目	L _晚	L _夜
內緊鄰 8 公尺(含)以上道路			70 (66)	74 (69)	70 (66)	67 (62)
2 陈安海凉从唐		日	66.9	69.3	67.5	66.3
2.鹽寮海濱公園	假	日	68.2*	69.8*	68.5*	66.6*
3.福隆街上	非假	日	67.6	69.9	68.3	66.5
ジ・小田 P生 注」 ユ	假	日	67.1*	70.0*	68.4	66.5*
4.102 縣道之新社橋	非假	日	58.6	64.1	61.1	59.8
4.102 旅俎之利心1個	假	日	54.3	60.5	58.1	58.7
環境音量標準			L _早	L _目	L _晚	L _夜
一般地區第二類管制區			55	60	55	50
5.過港部落	非假		48.7	50.5	44.7	48.6
~ .vg, E HP/B	假	日	50.4	57.1	50.6	50.3*

註:1.L_里: 5:00 - 7:00 L_日: 7:00 - 20:00

- 2.表中數值爲道路交通噪音改善依據之環境音量標準。
- 3.()內數值爲道路交通噪音經改善後應符合之標準。
- 4.* 表超出道路交通噪音或一般地區噪音之標準值。
- 5.噪音管制區劃分係依台北縣政府於87年8月最新公告內容爲依據。
- 6.環境音量標準係引用環保署於民國 85 年 1 月 31 日所公告之「環境音量標準」。
- 7.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年 8 月 15、16 日;102 縣道之新社橋、過港部落等二測站為88 年 8 月 14、17 日。

表 2.3-4 核四施工環境監測本季 9 月份噪音監測成果統計表

單位: dB(A)

環境音量標準第三類管制	品	L _早	L _目	L _晚	L _夜
內緊鄰8公尺(含)以上道	-	75	76	75	73
	<u> </u>	(73)	(75)	(73)	(70)
1.台 2 省道與 102 甲縣道交叉口	非假日	73.5	74.1	71.8	75.2*
1.6 2 自追與 102 中縣追文文口	假日	72.9	74.6	72.2	71.5
環境音量標準第二類管制	品	L _早	L _目	L _晚	L _夜
內緊鄰8公尺(含)以上道	70	74	70	67	
	(66)	(69)	(66)	(62)	
2.鹽寮海濱公園	非假日	63.1	67.8	68.3	67.7*
2.鹽兌/母/頁公園	假 日	69.5	67.2	65.4	64.4
3.福隆街上	非假日	68.4	71.9	69.3	69.4*
3.4届1年1月 工	假日	68.6	74.0	71.6*	69.4*
4.102 縣道之新社橋	非假日	60.8	63.1	60.9	59.3
4.102 旅退之机业饷	假 日	59.8	62.8	61.0	60.1
環境音量標準		L _早	L _目	L _晚	L _夜
一般地區第二類管制區	55	60	55	50	
5.過港部落	非假日	58.3*	60.4*	57.8*	56.4*
·····································	假 日	59.2*	61.8*	58.5*	56.0*

註:1.L_里: 5:00 - 7:00 L_日: 7:00 - 20:00

- 2.表中數值爲道路交通噪音改善依據之環境音量標準。
- 3.()內數值爲道路交通噪音經改善後應符合之標準。
- 4. * 表超出道路交通噪音或一般地區噪音之標準值 ○
- 5.噪音管制區劃分係依台北縣政府於87年8月最新公告內容爲依據。
- 6.環境音量標準係引用環保署於民國85年1月31日所公告之「環境音量標準」。
- 7.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年9月12、13 日;102 縣道之新社橋、過港部落等二測站為88 年9月10、11日。

表 2.3-5 核四施工環境監測本季 6 月振動監測成果統計表

單位:dB

振動規制値		L _{10(目)}	L _{10(夜)}	L ₁₀ (24 小時)
第二種地區		70	65	_
1.台 2 省道與 102 甲縣道交叉口	非假日	36.4	35.0	35.9
1.口 2 自迫央 102 中标坦文文口	假日	37.1	35.4	36.6
2.鹽寮海濱公園	非假日	34.0	33.0	33.7
2.盖泉海漠丛图	假日	33.4	32.6	33.1
3.福隆街上	非假日	41.3	37.5	40.2
3・順用 厚生 仕り ユー	假日	40.0	37.3	39.2
振動規制値		L _{10(日)}	L _{10(夜)}	L ₁₀ (24 小時)
第一種地區		65	60	_
4.102 縣道之新社橋	非假日	32.9	32.3	32.7
4.102 林 旭 之 利 心 恂	假日	32.9	32.0	32.6
5.過港部落	非假日	31.1	30.1	30.8
ジ・心 /で 印 冷	假日	31.0	30.1	30.7

註:1. $L_{10(日)}$: 7:00 - 21:00 $L_{10(夜)}$:21:00 - 7:00

2.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年 6 月 27、28 日;102 縣道之新社橋、過港部落等二測站為88 年7月4、5日。

表 2.3-6 核四施工環境監測本季 7 月振動監測成果統計表

單位:dB

振動規制値		L _{10(日)}	L _{10(夜)}	L ₁₀ (24 小時)
第二種地區		70	65	_
1.台 2 省道與 102 甲縣道交叉口	非假日	38.5	36.3	37.8
1.62 有道典 102 中标道文文目	假日	38.3	36.8	37.8
2.鹽寮海濱公園	非假日	33.2	32.4	33.0
2.鹽分/頁公園	假日	31.8	31.8	31.8
3.福隆街上	非假日	40.8	37.7	39.9
3.1個 阵 街 工	假日	38.9	37.3	38.4
振動規制値		L _{10(日)}	L _{10(夜)}	L ₁₀ (24 小時)
第一種地區		65	60	_
4.102 縣道之新社橋	非假日	32.3	31.0	31.8
4.102 旅	假日	32.3	32.0	32.2
5.過港部落	非假日	30.5	30.1	30.4
少。炮 仓 叫 仓	假日	31.3	30.2	30.9

註:1.L_{10(日)}: 7:00 - 21:00 L_{10(夜)}:21:00 - 7:00

2.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年 7 月 20、31 日;102 縣道之新社橋、過港部落等二測站為88 年 7 月 21 日、88 年 8 月 1 日。

表 2.3-7 核四施工環境監測本季 8 月振動監測成果統計表

單位:dB

振動規制値		L _{10(日)}	L _{10(夜)}	L ₁₀ (24 小時)
第二種地區		70	65	_
1.台 2 省道與 102 甲縣道交叉口	非假日	34.8	34.5	34.7
1.62 有道典 102 中标道文文目	假日	36.2	33.5	35.4
2.鹽寮海濱公園	非假日	32.7	32.3	32.6
2.鹽分/頁公園	假日	32.9	32.4	32.7
3.福隆街上	非假日	42.0	39.9	41.3
3.1個 阵 街 工	假日	42.2	38.6	41.2
振動規制値		L _{10(日)}	L _{10(夜)}	L ₁₀ (24 小時)
第一種地區		65	60	_
4 102 豚浴 力 虻 計 棒	非假日	32.4	31.2	32.0
4.102 縣 道 之 新 社 橋	假日	31.0	30.7	30.9
5.過港部落	非假日	36.0	30.2	34.6
少。炮 化 即 冷	假日	30.4	30.2	30.3

註:1.L_{10(日)}: 7:00 - 21:00 L_{10(夜)}:21:00 - 7:00

2.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年 8 月 15、16 日;102 縣道之新社橋、過港部落等二測站為88 年 8 月 14、17 日。

表 2.3-8 核四施工環境監測本季 9 月振動監測成果統計表

單位:dB

振動規制値		L _{10(目)}	L _{10(夜)}	L ₁₀ (24 小時)
第二種地區		70	65	_
1.台 2 省道與 102 甲縣道交叉口	非假日	36.5	352	36.1
1.口 2 自迫央 102 中标坦文文口	假日	35.4	33.3	34.7
2.鹽寮海濱公園	非假日	33.3	32.3	32.9
2.盖泉海漠丛图	假日	33.2	32.9	33.1
3.福隆街上	非假日	43.5	40.5	42.6
	假日	41.9	38.3	40.9
振動規制値		L _{10(日)}	L _{10(夜)}	L ₁₀ (24 小時)
第一種地區		65	60	_
4.102 縣道之新社橋	非假日	33.7	32.7	33.3
4.102 旅 担 人 机 化 饷	假日	33.8	32.9	33.4
5.過港部落	非假日	30.3	30.1	30.3
ジ・心 た 部 洛	假日	30.9	30.1	30.6

註:1. $L_{10(日)}$: 7:00 - 21:00 $L_{10(夜)}$:21:00 - 7:00

2.監測日期:台2省道與102 甲縣道交叉口、鹽寮海濱公園、福隆街上等三測站為 88 年9月12、13 日;102 縣道之新社橋、過港部落等二測站為88 年9月10、11日。

表 2.4-1 核四施工環境監測交通量本季 6、7 月監測成果統計表

單位:車輛數(所佔百分比%)

位置	監測	日期	機車	小型車	大型車	特種車	P.C.U/日	總車輛數
	88/6/28	非假日	1,102 (7.5)	10,195 (69.7)	850 (5.8)	2,481 (17.0)	19,888.5	14,628
台2省道與	88/6/27	假 日	1,376 (7.2)	15,076 (78.9)	1,170 (6.1)	1,481 (7.8)	22,546.6	19,103
102 甲縣道 交叉口	88/7/20	非假日	1,619 (10.7)	9,933 (65.8)	848 (5.6)	2,693 (17.9)	20,517.5	15,093
	88/7/31	假日	1,567 (8.5)	13,652 (73.7)	1,186 (6.4)	2,128 (11.4)	23,191.5	18,533
	88/6/28	非假日	642 (4.8)	9,597 (71.4)	808 (6.0)	2,385 (17.8)	18,688.6	13,432
鹽寮海濱		假日	731 (4.2)	14,044 (80.9)	1,133 (6.5)	1,443 (8.4)	21,003.9	17,351
公 園	88/7/20	非假日	1,167 (8.3)	9,509 (67.7)	786 (5.6)	2,589 (18.4)	19,431.5	14,051
	88/7/31	假日	392 (2.6)	11,690 (76.4)	1,123 (7.3)	2,102 (13.7)	20,438.0	15,307
	88/6/28	非假日	710 (5.4)	9,147 (69.8)	779 (5.9)	2,476 (18.9)	18,487.0	13,112
福隆街上	88/6/27	假日	1,195 (6.6)	14,314 (78.6)	1,197 (6.6)	1,513 (8.2)	21,846.3	18,219
	88/7/20 非1	非假日	671 (5.7)	7,972 (67.2)	639 (5.4)	2,578 (21.7)	17,319.5	11,860
	88/7/31	假日	808 (5.0)	12,028 (74.3)	1,171 (7.2)	2,187 (13.5)	21,335.0	16,194
	88/7/4	非假日	239 (21.5)	792 (71.4)	43 (3.9)	36 (3.2)	1,104.8	1,110
102 縣道之	88/7/5	假日	312 (19.6)	1,233 (77.6)	32 (2.0)	11 (0.8)	1,484.7	1,588
新社橋	88/7/21	非假日	199 (21.0)	636 (67.1)	59 (6.2)	54 (5.7)	1,015.5	948
	88/8/01	假日	396 (17.8)	1,777 (80.0)	42 (1.9)	7 (0.3)	2,080.0	2,222
	88/7/4	非假日	68 (36.6)	117 (62.9)	1 (0.5)	0 (0)	153.7	186
過港部落	88/7/5	假日	108 (36.4)	189 (63.6)	0 (0)	0 (0)	243.2	297
)四个2017存 	88/7/21	非假日	110 (38.6)	175 (61.4)	0 (0)	0 (0)	230.0	285
	88/8/01	假 日	80 (30.2)	185 (69.8)	0 (0)	0 (0)	225.0	265
	88/7/28	非假日	331 (29.1)	750 (66.0)	33 (3.1)	22 (1.8)	1,049.4	1,136
核四腐門口	88/7/27	假日	232 (29.1)	521 (65.4)	26 (3.3)	18 (2.2)	743.0	797
核四廠門口:	88/7/20	非假日	425 (31.0)	897 (65.4)	29 (2.1)	21 (1.5)	1,230.5	1,372
	88/7/31	假 日	366 (30.8)	755 (63.6)	39 (3.3)	(2.3)	1,097.0	1,187

表 2.4-2 核四施工環境監測交通量本季 8、9 月監測成果統計表

單位:車輛數(所佔百分比%)

位置	監測	日期	機車	小型車	大型車	特種車	P.C.U/日	總車輛數
	88/8/16	非假日	705 (4.7)	11,076 (74.3)	943 (6.3)	2,179 (14.7)	19,851.5	14,903
台2省道與	88/8/15	假日	768	15,070	1,171	1,140	21,216.0	18,149
102 甲縣道 交叉口	88/9/13	非假日	(4.2)	(83.0) 10,258	(6.5)	(6.3)	18,599.0	13,614
	88/9/12	假日	(3.9)	(75.3) 19,048	(3.0) 876	(17.8) 1,177	24,752.0	21,943
	88/8/16		(3.8)	(86.8) 10,615	(4.0) 927	(5.4) 2,095	18,879.5	·
	00/0/15	非假日	(1.8)	(76.4) 14,544	(6.7) 1,169	(15.1) 1,090	·	13,888
鹽寮海濱 公 園	88/8/15	假日	(2.2)	(84.7) 10,391	(6.8)	(6.3)	20,338.5	17,176
	88/9/13	非假日	(2.0)	(77.8)	(2.8)	(17.4)	18,216.5	13,351
	88/9/12	假 日	315 (1.5)	18,524 (89.4)	804 (3.9)	1,083 (5.2)	23,538.5	20,726
	88/8/16	非假日	791 (5.3)	10,942 (72.8)	996 (6.6)	2,301 (15.3)	20,232.5	15,030
-= 06 /+-	88/8/15	假日	862 (4.7)	15,088 (82.2)	1,262 (6.9)	1,153 (6.2)	21,502.0	18,365
福隆街上	88/9/13	非假日	626 (4.6)	10,230 (75.9)	597 (4.4)	2,030 (15.1)	17,827.0	13,483
	88/9/12	假日	1,223 (5.6)	18,497 (84.9)	944 (4.3)	1,109 (5.2)	24,323.5	21,773
	88/8/17	非假日	287 (21.4)	999 (74.5)	33 (2.5)	22	1,274.5	1,341
102 豚洋 力	88/8/14	假日	261	948	16	(1.6)	1,146.5	1,237
102 縣道之 新社橋	88/9/10	非假日	(21.1) 249	(76.6) 1,216	(1.3)	(1) 16	1,412.5	1,493
	88/9/11	假日	(16.7)	(81.4) 1,378	(0.8)	(1.1)	1,682.5	1,770
			(18.7)	(77.9) 62	(2.5)	(0.9)	·	
	88/8/17	非假日	(29.3) 125	(67.4) 194	(3.3)	(0)	81.5	92
過港部落	88/8/14	假日	(39.2)	(60.8)	(0)	(0)	256.5	319
	88/9/10	非假日	92 (55.1)	(44.9)	(0)	(0)	121.0	167
	88/9/11	假日	94 (37.6)	156 (62.4)	0 (0)	0 (0)	203.0	250
	88/8/16	非假日	220 (24.6)	631 (70.4)	25 (2.8)	20 (2.2)	851.0	896
14 m & 80 0	88/8/15	假 日	182 (31.8)	374 (65.3)	9 (1.6)	8 (1.3)	507.0	573
核四廠門口-	88/9/13	非假日	95 (15.5)	461 (75.3)	30 (4.9)	26 (4.3)	646.5	612
	88/9/12	假日	74 (19.2)	294 (76.2)	10 (2.6)	8 (2)	375.0	386

表 2.4-3 多車道郊區公路服務水準評值準則建議表

服務水準	密 度 (車/公里)	速 率 (KPH)	V/C	服務流率 (P.C.U./HR/LANE)
A	0~12	~65	~0.36	~750
В	12~18	65~63	0.36~0.54	750~1150
C	18~25	63~60	0.54~0.71	1150~1500
D	25~33	60~55	0.71~0.87	1500~1850
Е	33~52	55~41	0.87~ 1	1850~2100
F	52~	41~	1 ~	2100~

資料來源:交通部運輸研究所,「台灣地區公路容量手冊」,民國 80 年 5 月。 註: 各級服務水準之定義以美國 1985 年公路容量手冊中之定義如下:

- 1.A 級:自由車流,個別使用者不受其他使用者之影響,可自由地選擇其速率及 駕駛方式。本級爲最舒適和方便的。
- 2.B 級:穩定車流,個別使用者開始受其他使用者影響,其選擇速率及駕駛方式的自由程度不若 A 級者高,已開始逐漸喪失自主性。舒適及方便性亦不若 A 級者。
- 3.C 級:穩定車流,個別使用者明顯受其他使用者影響,必須小心謹慎地選擇速率及駕駛方式,舒適及方便性已有顯著地下降。
- 4.D 級:高密度且穩定的車流,速率及駕駛方式受其他使用者限制,駕駛人或行人感受到不舒適及不方便。交通量的少量增加,就會產生操作運行上的困難。
- 5.E 級:近似於容量之流量,速率降至某一較低的均匀值,駕駛方式受車隊控制, 幾乎無法變換車道,無舒適性及方便性可言,駕駛人或行人有高度的挫折 感。此時車流存有高度的不穩定性,少量的車流增量將會造成整個車流的 癱瘓。
- 6.F級:強迫性車流,流量的需求大於所能承受之容量,等候車隊出現在此區之前, 且呈衝擊波方式運作。車隊可能在合理速率下前進百餘公尺後,突然停止。 本級已無舒適性及方便性可言,駕駛人或行人有不安及焦燥的情緒出現。

表 2.4-4 核四施工環境監測本季 6 月道路服務水準等級分析

		設計實用	最高小時交	通流量 V		DD 267 _1.34
測 站 別	上 路寬及 車道路	最高小時 容 量 (P.C.U./H)	發生時間	P.C.U./H.	V/C	服務水準 等級
台 2 省道與 102	12 公尺標準	2400	(1) 16-17	1349.7	0.56	С
甲縣道交叉口	雙車道	2400	(2) 16-17	1551.1	0.65	C
薩索海涼八国	12 公尺	2400	(1) 16-17	1218.6	0.51	В
鹽寮海濱公園	標準雙車道	2400	(2) 16-17	1415.2	0.59	C
□17条分= L	12 公尺	2400	(1) 15-16	1224.3	0.51	В
福隆街上	標準雙車道	2400	(2) 16-17	1446.9	0.60	C
102 縣道之	12 公尺	2400	(1) 14-15	86.8	0.04	A
新社橋	標準雙車道	2400	(2) 13-14	86.4	0.04	A
· · · · · · · · · · · · · · · · · · ·	5 公尺	670	(1) 16-17	15.9	0.02	A
過港部落	單車道	670	(2) 11-12	20.6	0.03	A

註:發生時間(1)為 88 年 6 月非假日,(2)為 88 年 6 月假日。

表 2.4-5 核四施工環境監測本季 7 月份道路服務水準等級分析

	ne da T	設計實用	最高小時交	通流量 V		DD 75 1.34
測 站 別	上 路寬及 車道路	最高小時 容 量 (P.C.U./H)	發生時間	P.C.U./ H.	V/C	服務水準 等級
台 2 省道與 102	12 公尺標	2400	(1) 16-17	1502.5	0.63	C
甲縣道交叉口	準雙車道	2400	(2) 16-17	1285.5	0.54	В
薩索海涼八国	12 公尺	2400	(1) 16-17	1316.0	0.55	C
鹽寮海濱公園	標準雙車道	2400	(2) 7-8	1162.0	0.48	В
	12 公尺	2400	(1) 12-13	1409.0	0.59	C
福隆街上	標準雙車道	2400	(2) 7-8	1208.0	0.50	В
102 縣道之	12 公尺	2400	(1) 14-15	103.0	0.04	A
新社橋	標準雙車道	2400	(2) 17-18	141.5	0.06	A
温洪如荡	5 公尺	670	(1) 16-17	25.0	0.04	A
過港部落	單車道	670	(2) 12-13	21.0	0.03	A

註:發生時間(1)為 88 年 7 月非假日,(2)為 88 年 7 月假日。

表 2.4-6 核四施工環境監測本季 8 月道路服務水準等級分析

		設計實用	最高小時交	通流量 V		DD 767 _ L. S#
測 站 別	路寬及 車道路	最高小時 容 量 (P.C.U./H)	發生時間	P.C.U./ H.	V/C	服務水準 等級
台 2 省道與 102	12 公尺標	2400	(1) 15-16	1302.5	0.54	В
甲縣道交叉口	準雙車道	2400	(2) 16-17	1712.5	0.71	C
薩索海涼八国	12 公尺	2400	(1) 15-16	1294.0	0.54	В
鹽寮海濱公園	標準雙車道	2400	(2) 16-17	1733.5	0.72	D
=□17条分= L	12 公尺	2400	(1) 15-16	1396.0	0.58	C
福隆街上	標準雙車道	2400	(2) 16-17	1891.5	0.79	D
102 縣道之	12 公尺	2400	(1) 15-16	91.5	0.04	A
新社橋	標準雙車道	2400	(2) 15-16	73.0	0.03	A
· · · · · · · · · · · · · · · · · · ·	5 公尺	670	(1) 13-14	8.0	0.01	A
過港部落	單車道	670	(2) 10-11	30.0	0.04	A

註:發生時間(1)為 88 年 8 月非假日,(2)為 88 年 8 月假日。

表 2.4-7 核四施工環境監測本季 9 月份道路服務水準等級分析

	0.0 (2) 77	設計實用	最高小時交	通流量 V		DD マケーは 3年
測 站 別	上 路寬及 車道路	最高小時 容 量 (P.C.U./H)	發生時間	P.C.U./ H.	V/C	服務水準 等級
台 2 省道與 102	12 公尺標	2400	(1) 7-8	1237.5	0.52	В
甲縣道交叉口	準雙車道	2400	(2) 8-9	1697.5	0.71	C
薩索海涼八国	12 公尺	2400	(1) 7-8	1200.5	0.50	В
鹽寮海濱公園 	標準雙車道	2400	(2) 8-9	1589.0	0.66	С
-□7久分= L	12 公尺	2400	(1) 7-8	1173.5	0.49	В
福隆街上	標準雙車道	2400	(2) 15-16	1742.0	0.73	D
102 縣道之	12 公尺	2400	(1) 7-8	102.0	0.04	A
新社橋	標準雙車道	2400	(2) 16-17	112.5	0.05	A
温洪如姑	5 公尺	670	(1) 7-8	19.0	0.03	A
過港部落	單車道	670	(2) 17-18	25.0	0.04	A

註:發生時間(1)為 88 年 9 月非假日,(2)為 88 年 9 月假日。

表 2.5-1 核四施工環境監測石碇溪河川水位本季(88年第三季) 監測結果

測站別		一 碇 溪 測	站
日期月份	88年7月	88年8月	88年9月
1	1.30	1.29	1.10
2	1.29	1.29	1.13
3	1.28	1.29	1.36
4	1.29	1.28	1.30
5	1.33	1.28	1.21
6	1.31	1.28	1.18
7	1.30	1.32	1.16
8	1.30	1.32	1.16
9	1.29	1.22	1.15
10	1.28	1.16	1.13
11	1.28	1.15	1.13
12	1.28	1.17	1.12
13	1.28	1.16	1.14
14	1.27	1.15	1.18
15	1.26	1.13	1.21
16	1.27	1.14	1.19
17	1.32	1.13	1.24
18	1.29	1.12	1.21
19	1.28	1.11	1.17
20	1.27	1.11	1.23
21	1.26	1.18	1.79
22	1.25	1.14	1.70
23	1.29	1.12	1.45
24	1.29	1.11	1.35
25	1.33	1.11	1.31
26	1.32	1.11	1.42
27	1.31	1.11	1.69
28	1.31	1.10	1.46
29	1.36	1.10	1.35
30	1.34	1.10	1.32
31	1.31	1.10	-
月平均	1.29	1.17	1.28
核四環評同期平均	1.15	1.31	1.27
87年同期	1.24	1.26	1.37

註:1.河川水位之量測單位爲公尺,石碇溪測站之水尺零點爲10.62公尺。

^{2.}石碇溪測站之河川水位測值係每日24小時之平均值。

^{3.}核四環評同期平均:係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(台電公司,民國80年),資料統計時間自民國69年至79年。

表2.5-2 核四施工環境監測雙溪河川水位本季(88年第三季)監測結果

測站別	1	雙溪一號測站]		雙溪二號測立	占
日期	88年7月	88年8月	88年9月	88年7月	88年8月	88年9月
1	0.75	0.61	0.49	0.546	0.520	0.422
2	0.72	0.60	0.47	0.543	0.521	0.461
3	0.74	0.56	0.73	0.531	0.491	0.730
4	0.68	0.61	0.75	0.530	0.495	0.673
5	0.69	0.59	0.70	0.592	0.497	0.567
6	0.66	0.59	0.64	0.567	0.505	0.529
7	0.65	0.68	0.59	0.564	0.577	0.510
8	0.65	0.73	0.57	0.651	0.585	0.506
9	0.65	0.65	0.56	0.588	0.549	0.502
10	0.63	0.62	0.54	0.574	0.534	0.498
11	0.67	0.60	0.53	0.560	0.532	0.492
12	0.65	0.60	0.52	0.567	0.534	0.476
13	0.63	0.61	0.57	0.572	0.537	0.511
14	0.63	0.59	0.73	0.550	0.499	0.605
15	0.62	0.58	0.66	0.548	0.475	0.554
16	0.61	0.56	0.63	0.538	0.461	0.540
17	0.61	0.54	0.63	0.567	0.452	0.545
18	0.61	0.53	0.69	0.551	0.440	0.521
19	0.61	0.52	0.67	0.527	0.433	0.500
20	0.63	0.71	0.97	0.527	0.424	0.728
21	0.61	0.59	1.71	0.503	0.516	1.425
22	0.59	0.55	1.50	0.496	0.476	1.205
23	0.63	0.52	1.15	0.521	0.436	0.899
24	0.65	0.50	1.01	0.532	0.422	0.741
25	0.79	0.49	0.94	0.606	0.429	0.654
26	0.84	0.49	1.06	0.623	0.438	0.776
27	0.73	0.48	1.61	0.587	0.450	1.352
28	0.67	0.48	1.21	0.562	0.442	0.929
29	0.70	0.49	1.09	0.576	0.440	0.798
30	0.68	0.50	1.03	0.565	0.428	0.737
31	0.63	0.49	-	0.528	0.416	-
月平均	0.66	0.57	0.83	0.56	0.48	0.680
核四環評同期平均	0.76	0.84	1.13	-	-	-
87年同期	0.60	0.58	1.20	0.413	0.426	0.972

註:1. 水位量測單位爲公尺,雙溪一號之水尺零點爲2.42公尺,雙溪二號爲0.0公尺。

^{2.} 雙溪一號及二號測站之測值係採用每日24小時之平均值。

^{3.}核四環評同期平均: (一)係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(台電公司,民國80年),資料統計時間自民國69年至79年。

表2.5-3 核四施工環境監測河川斷面積、含砂量、流速與流量本季 (88年第三季)監測結果

測站	觀測日期	河川斷面 積(M²)	含砂量 (ppm)	平均流速 (m/sec)	流 量 (cms)	歷年同期流量 (cms)	87年同期監測 流量(cms)
	7月 8日(晴)	1.29	0	0.10	0.130		
	7月14日(晴)	1.29	0	0.07	0.086	0.003~0.233 (87年) (86年)	0.003~0.055
石 碇	7月27日(陰)	1.34	0	0.10	0.128		
溪	8月 2日(晴)	0.86	42	0.18	0.151	0.000~8.798	0.000 0.200
測站	8月23日(晴)	0.46	32	0.05	0.022	(87年) (86年)	0.000~0.200
	9月 1日(晴)	0.21	0	0.09	0.019	0.010~5.167	0.075~5.167
	9月 7日(晴)	0.79	0	0.10	0.081	(82年) (87年)	0.075~5.107
	7月 8日(晴)	9.94	77	0.27	2.717		
	7月14日(晴)	9.22	73	0.19	1.769	0.162~5.609 (87年) (85年)	0.162~0.816
雙	7月27日(陰)	10.57	74	0.26	2.734		
溪	8月 5日(晴)	8.69	59	0.15	1.328		
號	8月17日(晴)	8.34	30	0.11	0.945	(87年) (86年)	0.132~0.610
站	8月23日(晴)	7.23	30	0.11	0.762		
	9月 1日(晴)	7.16	29	0.09	0.619	0.377~151.486	1.580~151.486
	9月 7日(晴)	8.22	59	0.17	1.382	(82年) (87年)	1.360~131.460
	7月 8日(晴)	12.14	59	0.18	2.086		
	7月14日(晴)	9.91	79	0.08	0.769	0.112~2.408 (84年) (83年)	0.306~0.952
雙溪	7月27日(陰)	11.65	100	0.18	2.097		
_	8月 5日(晴)	9.60	45	0.08	0.761	0.000~18.87	0.000~0.138
號 站	8月23日(晴)	7.91	37	0.02	0.164	(87年) (86年)	0.000~0.136
	9月 1日(晴)	7.80	37	0.02	0.166	0.324~166.905	0.884~166.905
	9月 7日(晴)	9.90	27	0.08	0.782	(84年) (87年)	0.004~100.903

註:1.歷年同期流量係摘錄「核能四廠發電工程施工期間環境監測」報告,其資料統計時間自民國82年 至87年。

^{2.}石碇溪及雙溪7、8月上游均有施工;而雙溪8、9月有感潮現象。

表2.6-1 核四施工環境監測石碇溪河川水質本季(88年第三季)監測結果

樣品名	稱		上游	李水文站			石碇	溪廠界			澳店	三號橋	
檢測項目	單位	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期
水溫		23.3	29.2	32.3	25.9~31.3	26.0	31.0	31.7	25.0~29.5	24.5	30.8	30.5	26.4~30.9
pН	-	6.79甲	7.22甲	8.28甲	4.99x~6.86甲	6.53甲	7.21甲	7.60甲	6.10乙~6.96甲	6.52甲	7.18甲	7.75甲	4.53x~7.51甲
導電度	µmho/cm 25	89	113	145	98.5~165	98	143	143	95.6~159	170	94	11	152~2130
懸浮固體	mg/L	2.9甲	ND甲	13.2甲	5.5甲~7.6甲	4.8甲	5.4甲	4.0甲	5.2甲~12.7甲	6.3甲	5.8甲	5.8甲	6.7甲~11.8甲
硝酸鹽氮	mg/L	0.62	0.17	0.19	0.40~0.60	0.64	0.36	0.17	0.16~0.68	0.47	0.24	0.19	0.31~0.62
磷酸鹽	mg/L	0.039	0.025	0.014	0.020~0.083	0.013	0.033	0.008	0.0060~0.021	0.039	0.023	0.28	0.020~0.14
BOD ₅	mg/L	1.3乙	ND甲	1.8乙	ND甲	1.4乙	1.3乙	ND甲	ND甲~1.0甲	1.9乙	1.9乙	ND甲	ND甲~3.2丙
溶氧量	mg/L	6.26Z	6.47Z	7.82甲	4.60丙~7.62甲	8.14甲	8.20甲	8.11甲	3.99丙~7.66甲	8.05甲	8.13甲	5.82 Z	6.76甲~7.92甲
COD	mg/L	7.8	3.8	5.7	ND~9.1	8.0	6.6	6.8	ND~18.1	17.1	12.7	13.1	3.5~28.2
油脂	mg/L	ND	ND	ND	ND	2.1	ND	ND	ND	2.8	ND	ND	ND
氨氮	mg/L	0.072甲	0.045甲	0.13Z	0.10甲~0.19乙	0.044甲	ND甲	0.11乙	0.049甲~0.18乙	0.33x	0.70x	2.59x	0.19Z~2.55x
鎳	mg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
鐵	mg/L	0.19	0.30	0.34	0.054~0.38	0.20	0.30	0.25	0.095~0.37	0.088	0.015	0.019	0.035~0.48
鋅	mg/L	0.0050	ND	0.018	ND~0.036	ND	0.0040	0.038	0.004~0.034	ND	ND	ND	0.006~0.016
鎘	mg/L	ND	ND	ND	ND~0.004	ND	ND	ND	ND	ND	ND	ND	ND
銅	mg/L	ND	ND	ND	ND~0.003	ND	ND	ND	ND~0.0060	ND	ND	ND	ND~0.0080
鉻	mg/L	ND	ND	ND	ND~0.029	ND	ND	ND	ND	ND	ND	ND	ND~0.0090
汞	mg/L	ND	ND	0.00070	ND~0.00071	ND	ND	ND	ND~0.00071	ND	ND	ND	ND

註:1. "ND" (Not Detected)係表示未或低於偵測極限。

^{2.「}甲」、「乙」、「丙」、「丁」、「戊」各代表符合甲、乙、丙、丁、戊類陸域地面水體水質標準,「x」表未能符合戊類陸域地面水體水質標準。

表2.6-2 核四施工環境監測雙溪河川水質本季(88年第三季)監測結果

樣品名	3稱			國小			新社	大橋	
檢測項目	單位	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期
水溫		23.6	29.9	30.1	24.5~30.9	23.4	31.1	32.0	24.6~32.1
pН	-	6.61甲	7.13甲	7.60甲	4.60x~7.40甲	6.70甲	6.87甲	7.60甲	4.68x~7.42甲
導電度	µmho/cm 25	99	138	145	88~189	111	95	140	195~38900
懸浮固體	mg/L	25.2丙	10.0甲	13.7甲	3.9甲~8.3甲	16.7甲	5.3甲	10.5甲	8.5甲~19.0甲
硝酸鹽氮	mg/L	0.62	0.19	0.19	0.20~0.47	0.54	0.14	0.081	0.073~0.48
磷酸鹽	mg/L	0.023	ND	ND	ND~0.015	0.0070	ND	ND	ND~0.0092
BOD5	mg/L	1.6乙	1.4Z	ND甲	ND甲~1.0甲	1.6乙	1.6乙	ND甲	ND甲~1.0甲
溶氧量	mg/L	7.64甲	7.78甲	5.61乙	5.97甲~8.30甲	8.01甲	8.06甲	7.64甲	3.12丙~7.23甲
COD	mg/L	8.3	3.0	7.5	ND~4.4	8.8	9.9	44.4	3.5~222
油脂	mg/L	ND	ND	ND	ND	3.1	ND	ND	ND
氨氮	mg/L	0.072甲	0.045甲	0.20乙	0.10甲~0.18乙	0.17乙	0.086甲	0.32	0.13Z~0.19Z
鎳	mg/L	ND	ND	ND	ND	ND	ND	ND	ND
鐵	mg/L	0.084	0.036	0.054	0.038~0.062	0.044	0.050	0.0081	0.062~0.86
鋅	mg/L	ND	ND	0.031	ND~0.010	ND	ND	0.015	0.004~0.019
録	mg/L	ND	ND	ND	ND	ND	ND	ND	ND
銅	mg/L	ND	ND	0.0033	ND~0.012	ND	ND	0.0049	ND
鉻	mg/L	ND	ND	ND	ND	ND	ND	ND	ND
汞	mg/L	ND	ND	0.00090	ND~0.00071	0.00080	ND	ND	ND

註:1. "ND" (Not Detected)係表示未或低於偵測極限。

^{2.「}甲」、「乙」、「丙」、「丁」、「戊」各代表符合甲、乙、丙、丁、戊類陸域地面水體水質標準,「x」表未能符合戊類陸域地面水體水質標準。

表2.6-3 核四施工環境監測河口鹽度本季監測結果

單位:%。

				单位 ·%0
時間		測 站	石碇溪河口	雙溪河口
	7月6日	10:50~12:10	6.6	7.5
88年第三季	8月3日	10:40~12:20	20.0	17.0
	9月1日	10:50~12:10	32.9	31.2
	7月 7日 11:45~12:10		19.3	28.6
87年第三季	8月 4日	11:50~12:15	27.4	26.7
	9月 8日	12:00~12:30	4.8	0.2
五	基 年 測 值		0.0 33.4	0.0 32.1

註:歷年測值係整理本監測報告歷次測值(82年8月至87年12月)。

表 2.6-4 地面水體適用性質分類

水體分類 水體適用性	甲類	乙類	丙類	丁類	戊類
游泳	V				
一級公共給水	v				
二級公共給水	v	V			
三級公共給水	>	V	V		
一級水產用水	v	V			
二級水產用水	>	V	V		
一級工業用水	>	V	V		
二級工業用水	>	V	V	>	
灌溉用水	>	V	V	>	
環境保育	>	V	V	>	V

說明:一級公共給水:指經消毒處理即可供公共給水之水源。

二級公共給水:指需混凝、沈澱、過濾、消毒等一般通用之淨水方法處理可供公共給水之水源。

三級公共給水:指經活性碳吸附、離子交換、逆滲透等特殊或高度處理可供公共給水之水源。

一級水產用水:在陸域地面水體,指可供鱒魚、香魚及鱸魚培養用水之水源;在海域水體,指可

供嘉臘魚及紫菜類培養用水之水源。

二級水產用水:在陸域地面水體,指可供鰱魚、草魚及貝類培養用水之水源;在海域水體,指虱

目魚、烏魚及龍鬚菜培養用之水源。

一級工業用水:指可供製造用水水源。 二級工業用水:指可供冷卻用水之水源。

表2.6-5 保護生活環境相關環境基準

水體分類	甲	類	Z	類	丙	類	丁類	戊 類
水質用(註) 水質用(註)	陸域	海域	陸域	海域	陸域	海域	陸域	陸域
рН	6.5-8.5	7.5-8.5	6.0-9.0	7.5-8.5	6.0-9.0	7.0-8.5	6.0-9.0	6.0-9.0
溶氧量	≧ 6.5	≥ 5.0	≥ 5.5	≥ 5.0	≧ 4.5	≥ 2.0	≥ 2.0	≥ 2.0
大腸菌類	50	1,000	5,000		10,000			
生化需氧量	1.0	2.0	2.0	3.0	4.0	6.0		
懸浮固體	25		25		40		100	100
氨氮	0.1		0.3		0.3			
總磷	0.02		0.05					

註:各項之單位:pH值無單位,大腸菌類CFU/100mL,其餘均爲mg/L。

資料來源:行政院環保署87年6月24日修訂公告。

表 2.6-6 保護人體健康相關環境基準

	水質項目	基準値(單位:毫克/公升)
	鎘	0.01
	鉛	0.1
	六價鉻	0.05
重	砷	0.05
金	汞	0.002
	硒	0.05
屬	銅	0.03
	鋅	0.5
	錳	0.05
	銀	0.05
	有機磷劑(巴拉松、大利松、達馬松、亞素靈、 一品松、陶斯松)及氨基甲酸鹽(滅必蝨、加保 扶、納乃得)之總量	0.1
	安特靈	0.0002
	靈丹	0.004
農	毒殺芬	0.005
	安殺番	0.003
藥	飛佈達及其衍生物(Heptachlor, Heptachlor epoxide)	0.001
	滴滴涕及其衍生物(DDT, DDD, DDE)	0.001
	阿特靈、地特靈	0.003
	五氯酚及其鹽類	0.005
	除草劑(丁基拉草、巴拉刈、2、4 一地)	0.1

備註:1.保護人體健康相關環境基準係以對人體具有累積性危害之物質,具體標示其基 準値。

- 2.基準值以最大容許量表示。
- 3.全部公共水域一律適用。
- 4.其他有害水質之農藥,其容許量由中央主管機關增訂公告之。

表2.6-7 河川污染程度分類表

污染程度 項目	污染		中度污染	嚴重污染
溶 氧 量 (mg/L)	6.5以上	4.6~6.5	2.0~4.5	2.0以下
生化需氧量(mg/L)	3.0以下	3.0~4.9	5.0~15	15以上
懸浮固體 (mg/L)	20以下	20~49	50~100	100以上
氨 氮 (mg/L)	0.50以下	0.50~0.99	1.0~3.0	3.0以上
點數	1	3	6	10
污染積分數	2.0以下	2.0~3.0	3.1~6.0	6.0以上

說明:(1)表內之積分數爲溶氧量、生化需氧量、懸浮固體及氨氮點數之平均值。

(2)溶氧量、生化需氧量、懸浮固體及氨氮均採用平均值。

資料來源:台灣河川水質年報。

表2.6-8 核四施工環境監測河川水質污染程度本季推估結果

755	nd.			石石	定溪			雙 溪				
溪	ניל	上游z	k文站	石碇湾	奚廠界	澳底二	二號橋	貢寮	國小	新社	新社大橋	
項目		水質	污染 點數	水質	污染 點數	水質	污染 點數	水質	污染 點數	水質	污染 點數	
溶氧量	量	6.85	1	8.15	1	7.33	1	7.01	1	7.90	1	
生化需氧量	量	1.20	1	1.07	1	1.43	1	1.17	1	1.23	1	
懸浮固體	!	6.03	1	4.73	1	5.97	1	16.3	1	10.83	1	
氨多	<u></u>	0.082	1	0.058	1	1.21	6	0.11	1	0.37	1	
污染積分數	数	1		1	1	2.:	25	-	1		1	
污染 程	度	未受或和	肖受污染	未受或和	肖受污染	輕度	污染	未受或和	肖受污染	未受或和	肖受污染	

註:(1)各測站各項水質係採本季三次測值之平均值,若測值為ND則採(<u>值測極限值</u>)

爲其值以平均之。

(2)水質濃度之單位均爲mg/L。

表 2.6-9 WQI5 之水質點數計算式

水質參數	單 位	點 數(qi)
DO	飽和度%	$ \begin{array}{ l l l l l l l l l l l l l l l l l l l$
BOD	mg/L	1123.6/ (1+9.99×EXP (0.2×BOD))
NH ₃ -N	mg/L(as N)	9.79+56.76/ (N+0.6236888)
懸浮固體	NTU	$100.1 - 2.433 \times T + 2.282 \times 10^{-2} \times T^{2} - 7.90 \times 10^{-5} \times T^{3}$
導 電 度	μmho/cm	$101.7/(1+0.0062\times EXP(8.32\times 10^{-3}\times C))$

資料來源:水質監測整合計畫,行政院環保署,民國85年6月。

表 2.6-10 歐陽氏 WQI5 水質分類等級表

水質指標	水質等級	河川水體分類
91-100	優	甲
71-90	良 好	Z
51-70	中等	丙
31-50	中下等	Т
16-30	不 良	戊
<15	惡 劣	_

表 2.6-11 核四施工環境監測河川 WQI5 指標評估結果

溪別		石。碇 溪		雙	溪
項目	上游水文站	石碇溪廠界	澳底二號橋	貢寮國小	新社大橋
溶氧量點數	90.00	100.00	100.00	100.00	100.00
生化需氧量點數	70.00	70.00	70.00	70.00	70.00
懸浮固體物點數	90.00	90.00	90.00	70.00	70.00
氨氮點數	90.00	90.00	25.00	70.00	45.00
導電度點數	90.00	90.00	90.00	90.00	90.00
WQI5	78.09	82.41	65.67	72.50	66.19
水質等級	良好	良好	中等	良好	中等
水體分類	Z	Z	丙	Z	丙

表 2.7-1 核四施工環境監測施工區放流水水質本季 (88 年第三季) 監測結果

樣品	l名稱		辦公室持	ᆙ水□(−	-)		辦公區持	非水口(二	-)		宿舍	區排水口	
檢測項目	單位	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期
流量	m³/day	73	716	8	6.80~85	86	85	38	33~113	2242	1215	952	484~9802
pН	-	6.98	7.40	7.02	6.22~7.07	6.95	7.30	6.83	6.28~6.61	7.58	7.46	7.18	5.96*~6.89
導 電 度	µmho/cm 25	307	298	355	259~351	388	416	305	357~395	224	479	183	369~2410
懸浮固體	mg/L	3.1	8.2	12.4	4.0~13.0	2.1	33.3	4.8	5.6~39.0	3.4	46.8*	7.9	5.9~24.0
BOD ₅	mg/L	1.4	1.6	<1.5	1.2~3.3	2.2	10.0	1.6	1.5~11.8	6.4	24.9	22.2	1.1~11.2
油脂	mg/L	ND	ND	3.2	ND	ND	ND	ND	ND	ND	ND	3.6	ND~3.4
氨 氮	mg/L	0.24	0.32	0.20	0.17~0.31	1.71	0.92	4.06	ND~0.59	1.54	6.48	4.58	0.54~4.14

註:1.ND 表低於儀器偵測極限,各項之偵測極限值詳附錄 .5 所示。

^{2. *}表示未符合 87 年放流水水質標準。

表 2.7-1 核四施工環境監測施工區放流水水質本季(88 年第三季) 監測結果(續)

樣品名	3稱		二號排洪渠道				鹽寮一號村	喬排洪渠道	出口	鹽寮三號橋排洪渠道出口			
檢測項目	單位	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期	88.7.6 晴	88.8.3 晴	88.9.1 晴	去年同期
流量	m ³ /day	1	1	1	-(註 2)	-	1	-	-(註 2)	907	347	ı	283~3656
pН	-	7.40	7.80	7.96	6.57~8.32	7.76	7.95	7.42	6.87~7.44	8.19	8.03	7.85	6.49~7.35
導 電 度	µmho/cm 25	259	372	136	236~294	829	738	763	710~847	259	403	202	175~368
懸浮固體	mg/L	5.6	38.6	22.3	5.7~8.0	ND	39.8	10.8	ND~272*	85.3*	65.2*	15.7	21.8~733*
BOD ₅	mg/L	1.1	<2	1.7	1.8~4.5	1.5	4.6	<1.5	1.1~2.5	1.1	2.8	2.0	ND~2.8
油脂	mg/L	ND	ND	ND	ND	2.5	ND	ND	ND~2.1	ND	ND	2.0	ND
氨 氮	mg/L	0.83	1.71	1.38	ND~1.21	0.055	0.20	0.13	ND~0.71	ND	0.086	0.13	ND~0.23

註:1.ND 表低於儀器偵測極限,各項之偵測極限值詳附錄 .5 所示。

3.*表示未符合 87 年放流水水質標準。

^{2.}二號排洪渠道、鹽寮一號橋排洪渠道出水口二測點為滯流水,無法測得流量。

表 2.7-2 與本計畫相關之 87 年放流水標準

適	用範圍	項目	單位	最大限値
	下水道系統及建 理設施之廢污水	pH 値	-	6.0~9.0
架初污水處 共同適用	连议他人股份外	油脂	mg/L	10
中央主管機	關指定之事業廢	生化需氧量(BOD)	mg/L	30
水一貯煤場	、營造業	懸浮固體(SS)	mg/L	30
	流量大於 250 立	生化需氧量(BOD)	mg/L	30
	方公尺/日	懸浮固體(SS)	mg/L	30
建築物污水	流量介於 50~250	生化需氧量(BOD)	mg/L	50
處理設施	立方公尺/日	懸浮固體(SS)	mg/L	50
	流量小於 50 立	生化需氧量(BOD)	mg/L	80
	方公尺/日	懸浮固體(SS)	mg/L	80

資料來源:行政院環保署 86 年 12 月 24 修正發佈。

表2.7-3 本計畫區目前施工尖峰期間施工人員數量統計表

項目	人數	備註
1.施工作業人員	641	1.依據龍門施工處施工日誌 ○
(1)施工機具操作人員		2.施工作業人員依規定不能留宿於施工區。
(2)技術工		
(3)臨時工		
2.管理職工	417	龍門施工處辦公人員72人留宿。
3.保 警	99	保警均留宿於施工區
合 計	1157	_

表2.7-4 本計畫區目前施工期間污水量及污染量推估表

		項目			排	放	濃	度	污	染量
處理	別		污水量(m ³ /day)	В	OD5(mg/L	ــ)	BODs	(kg/day)
處	理	前	113	3.08	200				1	8.67
處	理	後	宿舍區 34.20		17.8				0.61	
			辦公室及其 他區域	2.9				0.23	0.84	
備		註	之污水量以每	人員約171人 人每日200公 人員約1026人)公升計。	2.87年 物污電低 2.7- 測 染 3.污染	D ₅ 為2 放水門於那是於所與 1 量(k	OOmg 水水 理型工 定 注 注 計 。 g/day	g/L。 質施乙類 強實流 強調 強調 強調 強調 強調 強調 強調 強調 大利 関係 大利 大利 大利 大利 大利 大利 大利 大利 大利 大利 大利 大利 大利	BOD₅爲30 類標準爲50 放流水水質 次質標準30 排放濃度 水量(m³/	含量估算,)mg/L,建築 mg/L。依台 質,BODs均 mg/L(詳表 將以本季實 day)x BODs

註:1.目前生活污水經化糞池處理,均達放流水標準。

2.BOD5: 生化需氧量 ∘

表2.8-1 核四施工環境監測地下水本季水位標高調查結果統計表

監測井編號	1	2	3	4	5	6	7	8	9	10	11	12
監測井名稱	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
地面標高	11.62	8.56	5.93	5.41	15.47	16.71	18.09	42.30	43.56	55.25	19.49	43.15
井頂標高	12.12	9.07	6.43	5.93	15.59	17.21	18.58	42.89	44.00	55.77	19.96	43.63
88/7/3 晴	9.72	5.20		2.63	2.83	13.60		29.42	32.13	43.97	12.13	
88/7/10 晴	10.05	5.57		2.61	3.03	13.85		28.05	31.78	43.80	12.36	
88/7/17 晴	10.05	5.22	連	2.43	2.88	13.65	連	27.71	31.84	43.77	12.19	連
88/7/24 雨	9.84	5.38		2.33	2.74	13.71		27.51	31.64	43.62	12.20	
88/7/31 晴	9.94	5.37		2.28	2.62	13.69		27.15	31.64	43.45	12.21	
88/8/7 雨	9.54	5.22	續	2.21	2.45	13.58	續	27.03	31.57	43.10	12.19	續
88/8/14 晴	9.46	5.47		2.05	2.22	13.65		27.02	31.44	42.53	12.18	
88//21 雨	9.66	5.04		2.05	2.08	13.44		26.58	31.34	41.91	12.08	
88/8/28 晴	9.30	4.83	監	1.93	1.96	13.35	監	26.41	31.13	41.29	12.07	監
88/9/4 雨	9.44	4.97		1.98	2.25	13.49		26.11	31.09	41.21	12.10	
88/9/11 晴	9.48	5.09		1.95	1.64	13.35		26.01	31.17	41.42	12.19	
88/9/18 晴	9.32	5.13	測	1.96	1.59	13.46	測	25.60	30.92	41.31	12.26	測
88/9/25 晴	10.08	6.22		2.23	1.50	13.58		25.69	32.20	39.15	11.74	
7月平均	9.92	5.34	3.90	2.50	2.87	13.70	1.15	28.17	31.85	43.79	12.22	38.24
8月平均	9.65	5.28	3.05	2.15	2.34	13.59	0.87	26.95	31.50	42.75	12.17	37.88
9月平均	9.39	5.01	3.86	1.96	1.86	13.41	0.72	26.03	31.08	41.31	12.16	37.90
本季平均	9.65	5.21	3.60	2.20	2.36	13.57	0.91	27.05	31.47	42.62	12.18	38.01

註:GM6、GM10及GM14等三口監測井之水位自87年3月起改為連續監測,監測數據詳附錄 .6。

表2.8-2 核四施工環境監測地下水水質本季監測結果

	农2.0-2 核四加工场境监测地下小外员本字监测和未										
監	檢驗項目	水溫	pН	導電度	濁度	氯鹽	懸浮固體	硫酸鹽	BOD	總有機碳	COD
測	偵測極限	_	_	_	0.05	2.0	2.0	2.0	1.0	0.50	2.5
井	單位	°C	_	μ mho/cm 25°C	NTU	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GM1	88年7月	23.4	7.01	1456	59.6	51.4	87.4	6.3	6.4	7.37	25.2
例	88年8月	24.0	7.00	3000	61.5	132	70.6	3.9	7.8	17.5	71.1
	88年9月	23.6	6.97	3500	90.0	249	129.0	ND	17.6	41.0	175
GM3	88年7月	23.0	6.17	195	16.4	15.0	27.2	18.4	ND	0.70	3.8
	88年8月	23.9	6.30	218	14.3	15.6	15.6	13.9	ND	0.57	ND
	88年9月	24.0	6.25	223	9.45	17.6	12.9	24.3	ND	1.77	ND
GM6	88年7月	22.5	5.97	198	26.2	23.9	20.5	11.7	ND	0.55	2.9
	88年8月	23.5	6.02	184	26.4	19.9	22.1	14.1	ND	0.60	ND
	88年9月	23.5	7.01	501	3.08	35.0	304.0	24.7	2.5	1.45	3.9
P5	88年7月	23.5	7.10	777	6.47	41.8	4.6	92.5	1.4	0.78	3.2
	88年8月	22.9	7.24	775	7.7	36.5	5.9	91.9	ND	1.65	3.3
	88年9月	23.2	7.28	773	3.24	33.5	ND	934.0	ND	1.40	5.8
P8	88年7月	24.0	7.75	287	0.84	14.6	ND	8.0	1.1	0.51	ND
	88年8月	24.7	7.90	295	0.77	17.8	ND	6.8	ND	ND	ND
	88年9月	24.2	7.87	293	3.13	18.9	ND	7.6	ND	0.67	ND
GM9	88年7月	21.5	5.79	108	20.1	15.7	30.9	7.3	1.1	0.45	ND
	88年8月	23.2	5.70	110	18.7	16.8	32.0	8.3	ND	0.59	7.7
G) (10)	88年9月	23.2	6.05	112	17.0	17.1	34.6	8.6	1.5	1.02	18.6
GM10	88年7月	23.2	7.69	1686	2.05	437.0	ND	35.5	1.1	0.49	11.7
	88年8月	25.2	7.76	1720	1.45	426	ND	32.3	ND	ND	6.8
	88年9月	24.5	7.74	1762	2.53	468	ND	36.3	ND	0.78	5.2
GM11	88年7月	23.5	6.59	223	15.6	30.2	8.5	6.9	1.2	0.29	ND
	88年8月	23.9	6.68	235	19.6	27.3	16.8	7.4	ND	ND	8.4
	88年9月	24.0	6.59	222	10.9	28.1	7.1	7.3	ND	2.21	ND
GM12	88年7月	22.5	5.89	183	0.67	21.2	ND	9.2	ND	0.29	ND
	88年8月	22.3	5.50	158	16.0	24.7	31.0	11.8	ND	0.88	5.6
	88年9月	23.0	6.26	234	3.68	21.9	ND	11.2	ND	0.61	ND
GM13	88年7月	23.1	5.32	158	2.49	29.1	ND	33.5	1.1	0.33	ND
	88年8月	23.8	5.60	167	1.57	28.7	ND	7.7	ND	1.82	ND
	88年9月	24.1	5.86	192	1.97	26.9	ND	9.3	ND	1.09	ND
GM7	88年7月	24.2	8.14	782	13.4	23.7	15.8	33.5	1.3	0.79	3.5
	88年8月	25.3	8.50	833	5.62	43.4	8.1	35.1	1.0	1.61	ND
	88年9月	23.7	8.50	830	5.62	32.2	7.2	35.5	ND	2.02	3.2
GM14	88年7月	21.4	6.31	274	87.8	20.7	16.6	10.2	ND	0.37	ND
	88年8月	22.0	6.40	271	26.9	20.7	8.5	13.9	ND	1.12	4.3
	88年9月	22.9	6.44	279	89.9	19.9	15.9	9.6	ND	0.75	ND
飲月	用水水源	-	-	-	-	-	-	250	-	4.0	25
水	質標準										
=+ · 1 N	JD表示主检	ili - /ir + \ /-	5:01+7678	<u></u>	<u></u>	·		<u></u>	·		· · · · · · · · · · · · · · · · · · ·

註:1.ND表示未檢出或低於偵測極限。

^{2. &}quot;□"表示不符合飲用水水源水質標準中地面水體或地下水體作爲自來水及簡易自來水之飲用水水源者(86.9.25發佈)。

表2.8-2 核四施工環境監測地下水水質本季監測結果(續一)

	<u> </u>	1X 11 // 10	<u> </u>		ייני ו ט	ナスハ	子皿从		、小只	<u>/ </u>
監	檢驗項目	氨氮	硫化物	總硬度	鐵	猛	鎳	鉛	鎘	鉻
測	偵測極限	0.040	0.010	3.0	0.002	0.002	0.005	0.030	0.004	0.005
井	單 位	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L
GM1	88年7月	36.40	0.018	246	0.30	0.92	ND	ND	ND	ND
	88年8月	0.73	0.071	488	0.097	1.59	0.0069	ND	ND	ND
	88年9月	127	ND	723	0.22	2.23	0.030	0.043	ND	0.0044
GM3	88年7月	ND	0.035	58.0	0.010	0.0030	ND	ND	ND	ND
	88年8月	ND	0.040	66.9	0.13	0.29	ND	ND	ND	ND
	88年9月	0.13	ND	65.9	0.016	0.039	ND	ND	ND	ND
GM6	88年7月	ND	0.027	23.0	0.0050	0.0170	ND	ND	ND	ND
	88年8月	ND	0.044	40.6	0.069	0.024	ND	ND	ND	ND
	88年9月	0.063	ND	47.9	0.038	0.092	0.0061	ND	ND	ND
P5	88年7月	0.052	0.027	280	0.22	0.036	ND	ND	ND	ND
	88年8月	0.086	0.063	284	0.14	0.030	ND	ND	ND	ND
	88年9月	0.18	ND	274	0.12	0.031	ND	0.033	ND	ND
P8	88年7月	ND	ND	123	0.0050	ND	ND	ND	ND	ND
	88年8月	ND	0.029	123	0.017	ND	ND	ND	ND	ND
	88年9月	0.086	ND	119	0.0028	ND	ND	ND	ND	ND
GM9	88年7月	ND	0.016	34.0	0.026	0.010	ND	ND	ND	ND
	88年8月	ND	0.039	21.9	0.030	0.0045	ND	ND	ND	ND
	88年9月	0.091	ND	13.0	0.011	0.0075	0.0059	ND	ND	ND
GM10	88年7月	0.26	0.018	500	0.014	0.048	ND	ND	ND	ND
	88年8月	ND	0.025	512	ND	0.043	ND	ND	ND	ND
	88年9月	0.42	ND	549	0.031	0.054	ND	ND	ND	ND
GM11	88年7月	ND	0.011	61.0	0.20	0.14	ND	ND	ND	ND
	88年8月	ND	0.018	60.7	0.76	0.15	ND	ND	ND	ND
	88年9月	0.11	ND	56.3	0.60	0.13	ND	ND	ND	ND
GM12	88年7月	ND	ND	71.0	0.030	0.12	ND	ND	ND	ND
	88年8月	ND	0.040	57.5	0.018	0.042	ND	ND	ND	ND
	88年9月	0.080	ND	60.9	0.022	0.16	ND	ND	ND	ND
GM13	88年7月	ND	0.017	40.0	0.0090	0.021	ND	ND	ND	ND
	88年8月	ND	0.024	38.8	0.0060	0.021	ND	ND	ND	ND
	88年9月	0.074	ND	45.9	0.064	0.025	ND	ND	ND	ND
GM7	88年7月	0.31	0.018	53.0	0.049	0.070	ND	ND	ND	ND
	88年8月	0.36	0.042	27.9	0.048	0.006	ND	ND	ND	ND
	88年9月	0.52	ND	17.0	0.046	0.029	0.0050	ND	ND	ND
GM14	88年7月	0.40	ND	88.5	0.92	0.17	ND	ND	ND	ND
	88年8月	ND	0.010	79.8	0.49	0.15	ND	ND	ND	ND
	88年9月	0.069	ND	84.6	0.48	0.16	0.011	ND	ND	ND
飲月	用水水源	1	-	-	-	-	-	0.05	0.01	0.05
	質標準									
-	加表示主給		F \0.11=00							_

註:1.ND表示未檢出或低於偵測極限。

^{2. &}quot;□"表示不符合飲用水水源水質標準中地面水體或地下水體作爲自來水及簡易自來水之飲用水水源者(86.9.25發佈)。

表2.8-2 核四施工環境監測地下水水質本季監測結果(續二)

	心上块况	血洲地	<u> `小小貝</u>	<u> 十一一一个</u>	
監	檢驗項目	銅	鋅	砷	汞
測	偵測極限	0.002	0.004	0.0005	0.0007
井	單位	mg/L	mg/L	mg/L	mg/L
GM1	88年7月	ND	ND	0.0051	0.00070
	88年8月	ND	ND	0.0098	ND
	88年9月	0.012	0.094	0.016	ND
GM3	88年7月	ND	ND	ND	ND
	88年8月	ND	ND	ND	ND
	88年9月	ND	0.011	ND	ND
GM6	88年7月	ND	ND	ND	ND
	88年8月	ND	ND	ND	ND
	88年9月	0.0036	0.080	ND	ND
P5	88年7月	ND	ND	ND	ND
	88年8月	ND	ND	ND	ND
	88年9月	ND	0.0068	ND	ND
P8	88年7月	ND	0.0040	ND	0.00070
	88年8月	ND	ND	ND	ND
	88年9月	ND	0.0047	ND	ND
GM9	88年7月	ND	0.0090	ND	ND
	88年8月	ND	0.0040	ND	ND
	88年9月	ND	0.0074	ND	ND
GM10	88年7月	ND	ND	ND	ND
	88年8月	ND	ND	0.00070	ND
	88年9月	ND	0.0047	ND	ND
GM11	88年7月	ND	ND	ND	ND
	88年8月	ND	0.012	ND	ND
	88年9月	ND	0.0057	ND	ND
GM12	88年7月	0.038	0.0080	ND	ND
	88年8月	ND	0.013	ND	ND
	88年9月	ND	0.0071	ND	ND
GM13	88年7月	ND	0.013	ND	ND
	88年8月	ND	0.012	ND	ND
	88年9月	ND	0.021	ND	ND
GM7	88年7月	ND	ND	ND	ND
	88年8月	ND	ND	ND	ND
	88年9月	ND	0.0070	ND	ND
GM14	88年7月	ND	ND	ND	ND
	88年8月	ND	ND	ND	ND
	88年9月	ND	0.063	ND	ND
	水水源	1.0	-	0.05	0.002
	標準				
				•	

註:1.ND表示未檢出或低於偵測極限。

表2.9-1 核四廠附近河川葉綠素甲調查報告

(88年8月)

單位: μg/l

河川		石碇溪		雙溪			
測站	一號測站	二號測站	三號測站	一號測站	二號測站	三號測站	
88年8月	0.67	1.41	2.60	1.91	1.27	2.50	

表2.9-2 核四電廠附近河川附著藻調查結果

(88年8月)

	季別	88年8月								
	河川	石碇溪				雙溪		附		
種類	測站	一號測站	二號測站	三號測站	一號測站	二號測站	三號測站	註		
ー 、Cyanophyta i	蓝綠藻門									
1. <i>Oscillatoria</i> spp.	顫藻	+	++	+						
二、Bacillariophyta 積	夕藻門									
1. Bacillaria paradoxa		+								
2. Cymbella ventricosa	扁腫拱形藻	+			+					
3. <i>Gomphonema</i> spp.	異極藻	+								
4. <i>Gyrosigma</i> sp.	旋形藻	+			+	+	+			
5. <i>Melosira varians</i>	變異直鏈藻	+			+					
6. <i>Navicula</i> spp.	舟形藻	+	+	+	+	+	+			
7. <i>Nitzschia palea</i>	谷皮菱形藻	+								
8. <i>Surirella</i> sp.	龍骨藻	+		+	+		+			
9. <i>Synedra ulna</i>	針杆藻	+			+	+				
三、Chlorophyta	祿藻門									
1. <i>Closterium</i> sp.	新月藻	+								
2. <i>Scenedesmus</i> sp.	連營藻	+								
3. <i>Spirogyra</i> sp.	水綿	+								

[&]quot;+++" 表示"豐富"

[&]quot;++" 表示"普通"

[&]quot;+" 表示"稀少"

表2.9-3 核四電廠附近河川浮游植物調查結果

(88年8月)

單位:×100 cell/L

	季別									
	——— <u>学別</u> ———河川		石碇溪		004-07	ュ - 雙溪		合		
	測站	D는 YOU'L		— 0± 1011+L	D는 YOU'L		— 0±1011+L	計		
	夕藻門	一號測站	—	三號測站	一號測站	—	三號測站	āl		
		250	90	170	240	20		960		
1. Achnanthes sp.	曲殼藻	350	80	170	240	20	70	860 70		
2. Amphiprora sp.	维巴特	00	20	270			70			
3. <i>Amphora</i> sp.	雙眉藻	80	30	270	Γ0			380		
4. Bacillaria paradoxa	奇異矽藻	60		750	50			860		
5. Chaetoceros curviseti	, , , , , , , , , , , , , , , , , , , ,		4=00	640	4-0		222	640		
6. Chaetoceros sp.	角刺藻		1760	1050	150		630	3590		
7. Cocconeis placentui		90	20	60	20			190		
8. <i>Cyclotella</i> sp.	小環藻	170	360	3130	40	20	20	3740		
9. Cymbella affinis	邊緣拱形藻	40						40		
10. <i>Cymbella turgida</i>	膨大拱形藻			10	20			30		
11. Cymbella ventricosa	扁腫拱形藻				110			110		
12. <i>Cymbella</i> spp.	拱形藻			20	20			40		
13. Diploneis sp.	雙壁藻			10				10		
14. <i>Gomphonema</i> sp.	異極藻	250		100	30	60		440		
15. <i>Melosira nummuloio</i>	es			110				110		
16. <i>Navicula cryptoceph</i>	隱頭舟形藻	430	50	90	470	70	20	1130		
17. Navicula placentula	舟形藻	60	20	50	100			230		
18. <i>Navicula popula</i>	瞳孔舟形藻	140		10	20			170		
19. <i>Navicula</i> spp.	舟形藻	370	50	60	70	40	110	700		
20. <i>Nitzschia palea</i>	谷皮菱形藻	650	100	60	800	60	20	1690		
21. <i>Nitzschia sigma</i>	彎菱形藻		10					10		
22. Nitzschia tryblionella	1	50			20			70		
23. Nitzschia spp.	菱形藻	140	50	20	50		20	280		
24. <i>Pinnularia</i> sp.	椿形(羽紋)藻	80		20				100		
25. Pleurosigma sp.				10		10		20		
三、Chlorophyta	祿藻門									
1. Chlorella sp.	綠藻						2040	2040		
2. Dictyosphaerium sp	鮘網藻	640						640		
3. Selenastrum gracile		480			320		80	880		
合	計	4080	2530	6640	2530	280	3010	19070		

表 2.9-4 核四電廠附近河川浮游動物調查結果

(88年8月)

單位: ind./L

	季別				88年8月				
	河川	石碇溪 1				雙溪	雙溪		
種類	測站	一號測站	二號測站	三號測站	一號測站	二號測站	三號測站	計	
─ ` Protozoa	原生動物門								
1. Arecella vulgaris	帶殼變形蟲	280	1080	20				1380	
2. Difflugia corona	衣沙蟲			20				20	
3. <i>Peridinium</i> sp.			20				900	920	
4. Vorticella sp.	吊鐘(鐘形)蟲		20					20	
□ \ Trochelminthes	輪形動物門								
1. <i>Coluella</i> sp.		20			20			40	
2. <i>Rotaria</i> sp.	輪蟲				20			20	
3. <i>Trichotria</i> sp.				20				20	
三 · Arthropoda	節肢動物門								
1. Cyclops (Nauplius)	劍水蚤	20	140	13120	20	1460	2400	17160	
2. Cyclops sp.	劍水蚤			320	40		160	520	
合	計	320	1260	13500	100	1460	3460	20100	

表2.9-5 核四廠附近河水生昆蟲調查報告

(88年8月)

單位:隻

	單位:隻								
		季別			8	8年8月]		
		河川		石碇溪			雙溪		合
	種類	图 名 測站	一號測站	二號測站	三號測站	一號測站	二號測站	三號測站	計
蜉蝣目		Order Ephemeroptera							
- `	扁蜉蝣科	Heptageniidae							
1.	吉田蜉蝣	Ecdyonurus yoshidae	18			40			58
= \	四節蜉蝣科	Baetidae(Pseudcloeon)							
1.	小蜉蝣	<i>Baetis</i> spp.				5			5
2.	雙尾刺小蜉蝣	Baetiella bispinosus				4			4
三、	小裳蜉蝣科	Leptophlebiidae							
1.	異鰓鳶色蜉蝣	Thraulus sp.				2			2
蜻蛉(蛟	野	Order Odonnata							
- `	幽蟌科	Euphaeidae							
1.	台灣蜻蛉水蠆	Euphaea formosa	4						4
廣翅目		Order Megaloptera							
— `	蜻蛉(石蛉)科	Corydaidae							
	黑條蛇蛉	Parachauliodes sp.	1						1
毛翅目	711111111111111111111111111111111111111	Order Trichoptera							
	網(縞)石蠶科	Hydropsychidae							
	岐阜縞石蠶	<i>Hydropsyche</i> sp.	3			6			9
2.	小縞石蠶	Cheumatopsyche breviline	ata			3			3
= \	指石蠶科	Philopotamidae							
1.	指石蠶	Chimarra sp.				11			11
鞘翅目		Order Coleoptera							
— 、	扁泥蟲科	Psephenidae							
1.	扁泥蟲(幼蟲)	<i>Psephenoides</i> sp.		1					1
雙翅目		Order Diptera							
	搖蚊科	Chironomidae							
	搖蚊	Chironomus sp.	2			9			11
合	計	9科11種	28	1	0	80	0	0	109

表2.9-6 核四廠附近河川魚類及無脊椎動物調查報告

(88年8月)

單位:隻

								型位:隻	
		<u>季別</u>			8	8年8月]		
		河川		石碇溪	; ;		雙溪	ı	合
	種類	學名 測站	一號測站	二號測站	三號測站	一號測站	二號測站	三號測站	計
壹、	魚類	Fish							
_	、鯉科	Cyprinidae							
	1. 台灣石滨	Acrossochelius pardoxus	s			1			1
	2. 粗首鱲(溪哥)	Zacco pachycephalus				2			2
=	、慈鯛科	Cichlidae							
	1. 吳郭魚	<i>Tilapia</i> sp.		1	2	2			5
Ξ	、鰕虎科	Gobiidae							
	1. 褐吻鰕虎	Rhinogobius brunneus	2						2
四四	、塘鱧科	Eleotridae							
	1. 棕塘鱧	Eleotris fusca		1	2				3
小	計	4科5種	2	2	4	5	0	0	13
黄	甲殼類	Crustacea							
	1. 無齒螳臂蟹	Chiromates dehaani		2				1	3
	2. 淡水長臂蝦	Macrobrachium sp.	1	2	1	4	1		9
	3. 五鬚蝦	Palaemon sp.						1	1
	4. 雙齒近相手蟹	Perisesarma bidens		1	1				2
	5. 褶痕擬相手蟹	Parasesarma plicatum		1				1	2
	6. 招潮蟹	<i>Uca</i> sp.						1	1
小	計	6種	1	6	2	4	1	4	18
参、	軟體動物類	Mollusca							
_	、 椎實螺 科	Lymnaeidae							
	1. 小椎實螺	Radix auricularia swinhoei				2			2
=	、蜆科	Corbiculidae							
	1. 台灣蜆	Corbicula fluminea				1			1
Ξ	、蜑螺	Neritidae							
<u> </u>	1. 冠蜑螺	Clithon corona		2					2 4
I	2. 壁蜑螺	<i>Septaria</i> sp.		4					4
小	計	3科4種	0	6	0	3	0	0	9

表2.10-1 核四施工環境監測海水水質本季監測結果

序	經 緯	度		N 25°03.5	5'	I	E 121°55.7	71]	N 25°03.0'		I	甲類流	每域		
	様 品 名	3 稱	—	虎測站(表	層)	— 5.	虎測站(底	層)	— ₅	虓測站(表	層)	——	虎測站(底	層)	水體ス	と 質
號	檢測項目	單 位	88.7.6	88.8.4	88.9.1	88.7.6	88.8.4	88.9.1	88.7.6	88.8.4	88.9.1	88.7.6	88.8.4	88.9.1	標	準
1	水溫	$^{\circ}\!\mathbb{C}$	21.9	28.6	27.2	21.7	28.3	27.3	21.8	28.6	26.8	21.9	28.4	26.8	-	
2	pН	_	8.22	8.05	8.17	8.23	8.03	8.16	8.27	8.11	8.18	8.27	8.11	8.17	7.5~	8.5
3	導電度	mmho/cm 25°C	50	50.2	52.2	50.6	50.5	52.3	50.6	50.5	52.3	50.4	50.4	52.2	-	
4	溶氧量	mg/L	6.20	6.26	6.8	6.24	6.30	6.58	6.64	6.75	6.06	6.80	6.87	6.16	≥5	.0
5	濁度	NTU	4.39	1.75	1.35	4.29	0.89	1.23	2.14	0.67	0.72	3.62	0.66	1.88	-	
6	懸浮固體	mg/L	5.2	9.6	8.3	10.5	7.6	10.3	5.1	8.7	8.6	7.1	6.3	11.2	-	
7	BOD	mg/L	2.2*	1.30	ND	2.8*	ND	ND	1.6	ND	ND	2	ND	ND	2.0)
8	大腸菌數	個/100ml	<10	1	90	170	1	140	180	<10	90	110	22	20	100	0
9	總磷	mg/L	0.019	0.027	0.044	0.010	0.011	0.015	0.013	0.018	0.021	0.006	0.006	0.016	-	
10	油脂	mg/L	ND	3	2.3	ND	ND	ND	ND	ND	2.8	ND	ND	ND	-	
11	銅	μ g/L	2.02	2.2	1.99	2.37	1.5	1.19	0.58	2.4	0.79	0.76	1.9	1.19	20)
12	鉛	μ g/L	ND	ND	ND	ND	ND	1.3	ND	ND	1.3	ND	ND	ND	100)
13	鎘	μ g/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10)
14	鋅	μ g/L	4.99	12.9	ND	7.4	10.6	ND	0.72	10.9	1.4	5.98	4.61	ND	40)
15	鎳	μ g/L	ND	2.2	1.87	ND	ND	ND	ND	ND	ND	ND	ND	1.23	-	
16	鉻	μ g/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50)
17	汞	mg/L	ND	0.001	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.00	2
18	鎂	mg/L	1230	1220	1250	1160	1240	1280	1165	1250	1330	1180	1250	1230	-	

註:ND表示小於儀器偵測極限,各項儀器偵測極限值詳附錄Ⅳ.7所示。

表2.10-1 核四施工環境監測海水水質本季監測結果(續)

序	經 緯	度		N 25°02.3	1]	E 121°55.8	3'		N 25°01.6	'	I	E 121°56.4	甲類海域	
	樣 品 名	名 稱	三号	虎測站(表	層)	三号	虓測站(底	層)	四别	虎測站(表	層)	四组	虎測站(底	層)	水體水質
號	檢測項目	單 位	88.7.6	88.8.4	88.9.1	88.7.6	88.8.4	88.9.1	88.7.6	88.8.4	88.9.1	88.7.6	88.8.4	88.9.1	標準
1	水溫	$^{\circ}\mathbb{C}$	22.0	28.8	26.9	22.0	28.3	26.7	22.0	28.6	27.1	22.0	28.2	26.5	-
2	рН	_	8.28	8.13	8.18	8.27	8.16	8.18	8.27	8.14	8.18	8.28	8.17	8.16	7.5~8.5
3	導電度	mmho/cm 25°C	49.9	50.9	52.3	50.2	50.2	52.3	50.5	50.8	52.2	50.5	50.3	52.0	-
4	溶氧量	mg/L	6.84	6.94	6.28	6.94	7.03	6.24	6.79	6.60	5.91	6.82	6.75	6.6	≥5.0
5	濁度	NTU	2.91	0.96	1.13	2.09	0.91	1.16	1.56	0.89	0.76	0.88	1.06	0.90	-
6	懸浮固體	mg/L	5.2	7.1	9.4	5.3	8.2	9.2	2.9	14.2	8.7	3.7	9.8	16.1	-
7	BOD	mg/L	2	ND	ND	1.6	ND	ND	2.3*	ND	ND	2.3*	ND	ND	2.0
8	大腸菌數	個/100ml	960	<10	20	10	3	50	<10	1	130	30	3	130	1000
9	總磷	mg/L	0.011	0.013	0.026	0.008	0.006	0.010	0.011	ND	0.016	0.011	0.011	0.010	-
10	油脂	mg/L	2.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2.0	-
11	銅	μg/L	0.58	2.4	1.19	0.8	2.02	1.4	1.84	2.02	ND	2.6	2.2	0.79	20
12	鉛	μ g/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
13	銅	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	10
14	鋅	μg/L	ND	14.4	ND	3.24	8.8	ND	2.83	4.7	ND	13.4	8.6	ND	40
15	鎳	μg/L	ND	1.62	ND	ND	1.91	ND	ND	1.33	ND	ND	1.91	2.2	-
16	鉻	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50
17	汞	mg/L	ND	0.001	ND	ND	0.001	ND	0.00070	0.001	ND	0.001	ND	ND	0.002
18	鎂	mg/L	1150	1240	1250	1140	1260	1240	1165	1230	1310	1140	1240	1280	-

註:ND表示小於儀器偵測極限,各項儀器偵測極限值詳附錄Ⅳ.7所示。

表2.11-1 核能四廠預定地附近海域生態環境現況分析表(民國88年7月6日)

Station		1			2			3			4			5	
Sampling depth (-M)) 0	3	В	0	3	В	0	3	В	0	3	В	0	3	В
Nitrate (mg/L)	0.921	0.381	0.660	0.633	0.855	0.877	0.089	0.244	0.509	0.660	0.966	0.412	0.226	0.075	1.059
Nitrite (mg/L)	0.148	0.100	0.086	0.101	0.133	0.132	0.050	0.014	0.087	0.107	0.201	0.069	0.040	0.010	0.300
Phosphate (mg/L)	0.09	0.05	0.04	0.04	0.05	0.04	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.05
Silicate (mg/L)	0.98	0.76	0.94	0.76	0.77	0.85	1.16	0.90	0.81	0.98	0.72	0.79	0.58	0.51	1.04
Chl. \underline{a} (μ g/L)	1.24	0.99	2.98	2.98	3.47	2.73	1.74	1.98	1.24	1.98	1.98	1.98	1.98	2.98	3.97
P.P. (μ gC/l/hr)	0.52	0.45	0.93	0.95	0.98	0.85	0.65	0.70	0.50	0.72	0.69	0.68	0.71	0.92	0.99
T.N. (mg/L)	0.26	0.12	0.18	0.18	0.24	0.24	0.04	0.06	0.15	0.19	0.28	0.12	0.07	0.02	0.34
T.P. (mg/L)	0.09	0.05	0.04	0.05	0.05	0.04	0.03	0.04	0.05	0.04	0.05	0.04	0.04	0.05	0.06

ND : Chl.<u>a</u> <0.25 μ g/L

Station		6			7		8		9			10	
Sampling depth (-M)) 0	3	В	0	3	0	3	0	3	В	0	3	В
Nitrate (mg/L)	0.629	0.851	0.948	0.306	0.102	0.483	0.629	0.044	1.050	1.134	0.598	1.010	0.558
Nitrite (mg/L)	0.190	0.122	0.136	0.057	0.014	0.080	0.018	0.030	0.288	0.010	0.094	0.157	0.098
Phosphate (mg/L)	0.08	0.06	0.14	0.07	0.05	0.05	0.05	0.06	0.06	0.11	0.06	0.06	0.07
Silicate (mg/L)	0.70	0.74	0.81	0.56	0.89	0.57	1.02	0.86	1.05	0.94	0.66	0.66	0.97
Chl. \underline{a} (μ g/L)	3.22	1.74	2.73	2.23	2.23	2.23	2.23	1.24	2.98	2.48	2.98	2.48	2.23
P.P. (μ gC/l/hr)	0.97	0.65	0.87	0.79	0.73	0.75	0.72	0.53	0.92	0.81	0.94	0.82	0.76
T.N. (mg/L)	0.20	0.23	0.26	0.09	0.03	0.14	0.15	0.02	0.33	0.26	0.17	0.28	0.16
T.P. (mg/L)	0.08	0.07	0.14	0.07	0.06	0.05	0.06	0.06	0.06	0.12	0.06	0.06	0.08

 $\overline{\text{ND}: \text{Chl.}\underline{a}} < 0.25 \,\mu\,\text{g/L}$

表 2.11-2 核四施工環境監測海域生態植物性浮游生物細胞密度與分佈狀況88年7月調查結果

	1			2		3		4			5		6		-	7		8		9		1	0		<u>'</u>		
種類\深度		3	В		3 E		3	B 0	3	В		3 E	3 0		В				3	0 :	3	В		В	合計	平均值	百分比
CHRISOPHYTA(金黃藻門)																											
BACILLARIOPHYCEAE(砂藻網)																											
Achnanthes sp.(曲殼藻)		16	6	10	4	6	6	4 4	2	2	4	4	12 1	0	2	8	2		4	8	6	16	6 8	3	150	5.36	6.81%
Amphora angusta (狭窄雙眉藻)			2																						2	0.07	0.09%
Amphora sp.(雙眉藻)	2	4	2		2	2	2						2					2			4	2			24	0.86	1.09%
Asterionella japonica (日本星杆藻)	8	6																	2	2	10				28	1.00	1.27%
Bacteriastrum varians (變異輻杆藻)				16							6	18											36	5	76	2.71	3.45%
Biddulphia mobiliensis (活動盒形葉)																2									2	0.07	0.09%
Chaetoceros curvisetus (旋鏈角刺藻)																				54					54	1.93	2.45%
Chaetoceros spp.(角刺藻)				78	2	24 52	12	8 58		48 1	12	64 5	50 1	8 16	52	64		44				3	4 94	1 14	842	30.07	38.24%
Cocconeis scutellum (盾卵形藻)	14	2				4		2		2		2				2		2			2				32	1.14	1.45%
Coscinodiscus spp.(圖節葉)																2			2				2		6	0.21	0.27%
Cyclotella sp.(小環藻)							4	4								14		2	16	2					42	1.50	1.91%
Cymbella sp.(橘鹭藻)																2							4	1	6	0.21	0.27%
Diploneis fusca (雙壁藻)		2						2											2						6	0.21	0.27%
Eucampia cornuta (長角彎角藻)		12		2	2			4			10	4		10)		16						4		64	2.29	2.91%
Gomphonema sp.(異極藻)						2 2											4		4						12	0.43	0.54%
Grammatophora marina (海生斑條葉)	2	4	4			4 2	4						8				4	2		2					36	1.29	1.63%
Hemiaulus sinensis (中華半管藻)																							8	3	8	0.29	0.36%
Lauderia borealis (北方勢德藻)																						1	6		16	0.57	0.73%
Licmophora abbreviate (短紋楔形藻)	8		2						2																12	0.43	0.54%
Mastogloia sp.(胸隔藻)			2					2																	4	0.14	0.18%
Navicula cancellate (舟形藻)			2				2																12	2	16	0.57	0.73%
Navicula membranacea (膜狀舟形藻)									2																2	0.07	0.09%
Navicula spp.(舟形藻)		14	6	4	4	2 14	4	8 2	10	8		1	12	2	4	6	2	26	6	10	6	4	2	2 2		5.86	7.45%
Nitzschia delicatissima (柔弱菱形藻)				14										8											22	0.79	1.00%
Nitzschia longissima (長菱形藻)						2		2						2	2										6	0.21	0.27%
Nitzschia panduriformis (琴氏菱形藻)										2															2	0.07	0.09%
Nuzsenia panaurijormis (今に変形無) Nitzschia sigma (葡菱形藻)	2				2	2										2									8	0.29	0.36%
Nitzschia spp.(菱形藻)	-	2		4		2 2	6	10			2					_		4	10	2	2			2		1.71	2.18%
Pinnularia sp.(羽紋藻)		_									_									-	-	2		_	2	0.07	0.09%
Pleurosigma sp.(斜紋葉)			2																			4			6	0.21	0.27%
			-					4														·			4	0.14	0.18%
Rhizosolenia calcaravis (距端根管藻)						4		-																	4	0.14	0.18%
Rhizosolenia castracanei (卡氏根管藻)						14																			14	0.50	0.64%
Rhizosolenia imbricata (覆瓦根管藻) Rhizosolenia setigera (剛毛根管藻)						2			2																4	0.14	0.18%
						-	16		-																16	0.57	0.73%
Rhizosolenia stolterfothii (斯氏根管藻)					8		10							2	,										10	0.36	0.45%
Rhizosolenia styliformis (筆尖根管藻)	2	6	4			2								2		2									18	0.64	0.43%
Synedra ulna (肘狀針杆藻)		12	4	4	6	10	2	0		2	4	4		4		4	2	4	2	4					76	2.71	3.45%
Thalassionema nitzschioides (菱形海線藻)	-	2		4		2	2	0		2	4	4		4		4	2	4	2	4					4	0.14	0.18%
Thalassiosira hyalina (透明海鏈藻)			2	4	6	2	2	_	2	_		2	2		2	12		10			2		4		68	2.43	3.09%
Thalassiosira spp.(海鏈藻)	2	_	4	4				6	2	6	10			6 2				2	2	1.4	4	4		2 4			
Thalassiothrix frauenfeldii (伏恩海毛藻)	2	. 2	4		6	10	10		2		10	10		6 2	. 4	0		2	2	14	4	4	8 4	2 4	110	4.14	5.27%
CHRYSOPHYCEAE(金黃藻網) Dictyocha fibula (小等刺砂鞭藻)												2													2	0.07	0.09%
CYANOPHYTA(藍綠藻門)																											
CYANOPHYCEAE(藍綠藻網)																											
Trichodesmium sp.(束毛藻)				164																					164	5.86	7.45%
Tronsacommun obs(Ar. Car.)																										5.00	
PYRROPHYTA(甲藻門)																											
																				2					2	0.07	0.09%
Ceratium furca (叉狀角藻)						2														2					2	0.07	0.09%
Oxytoxum scolopax (尖甲藻)	E 4	9,6	30	300	10 4			46 00	22	70 1	19 1	10 0	6 40	2.1	61	126	30	08	50 1	00 -	36	32 7	W 164	5 22	2202	0.07	0.09%
<u>總計</u>	54	00		JUU 4			70	46 82	22		.+o 1			, 54		140		20		.00 .	.00		→ 100			70 //	1
平均值			59		12	41		81		58		1.	15		49		78		74			56		87		78.64	

註:1.單位為(×100 cells/L)

2.探樣日期:88年7月6日

表 2.11-3 核四施工環境監測海域各測站浮游動物之種類與個體量88年7月調查結果

種類\站別	1	2	3	4	5	6	7	8	9	10	合計	平均值	百分比
COELENTERATA(腔腸動物門)						_	_						
Hydromedusae(水螅水母)	1514	1160	604	401	1775	2492	1641	2163	2148	1161	15058	1506	3.05%
Siphonophora(管水母)	239	497	173	100	273	440	298	416	601	129	3166	317	0.64%
Scyphomedusae(缽水母)	159	331	173	301	341	293	448	333	430	64	2873	287	0.58%
CTENOPHORA(櫛水母)													
ANNELIDA(環節動物門)													
Polychaeta(多毛類)	159	249	86	100	205	366	224	333	344	64	2130	213	0.43%
CHAETOGNATHA(毛顎動物門)													
Sagittidae(箭蟲類)	1116	1905	1294	903	1365	1905	2089	1996	2749	838	16161	1616	3.27%
CRUSTACEA(甲殼綱)													
Copepoda(橈腳類)	32755	38275	33294	32393	30928	38182	40204	41255	47074	22766	357126	35713	72.24%
Amphipoda(端腳類)	239	331	173	100	478	953	820	582	687	322	4686	469	0.95%
Penaeidea(對蝦類)	717	1077	863	501	1229	1832	1492	1996	2577	903	13187	1319	2.67%
Luciferidae(螢蝦類)	478	1574	518	201	751	1612	1566	1497	1718	580	10496	1050	2.12%
Zoea(跼眼幼蟲)	80	166	86	100	205	293	224	166	344	64	1728	173	0.35%
Alima larva(蝦姑幼生)	80	249	173	100	137	220	149	83	172	64	1426	143	0.29%
Ostracoda(介形目)	80	166	86	100	137	220	149	250	258	64	1509	151	0.31%
DOLIOLETTA(浮游性被囊類)	1913	911	3709	1605	1365	3371	2685	4242	4639	645	25085	2509	5.07%
MOLLUSCA(軟體動物門)													
Creseis(筆帽螺)	319	994	604	602	546	806	1343	1747	1718	580	9259	926	1.87%
TUNICATA(海鞘綱)													
Oikopleuridae(尾蟲類)	398	580	863	1203	888	1392	1566	1248	1976	645	10759	1076	2.18%
Salpida(海桶類)	239	497	1208	702	819	1466	1343	1747	1976	387	10383	1038	2.10%
Fish egg(魚卵)	478	663	604	903	683	1099	1193	1580	1804	322	9330	933	1.89%
Fish larvae(仔稚魚類)	0	0	0	0	0	0	0	0	0	0	0	0	
合計	40964	49625	44508	40315	42125	56944	57435	61632	71212	29602	494362	49436	100%
生體量 (g/1000m³)	49	60	48	41	45	81	72	69	80	27			

採樣日期:88年7月6日

表 2.11-4 核四施工環境監測海域生態沙質區底棲無脊椎動物88年8月調查結果

種類\站別		3	4	合計	平均值	百分比
Annelida(環節動物)						
Polychaeta	多毛類	2	1	3	1.5	8.82%
Crustacea(甲殼動物)						
Cragon sp.	褐蝦	2	1	3	1.5	8.82%
Diogenes sp.	活額寄居蟹		2	2	1.0	5.88%
Parapenaeopsis sp.	彷對蝦	1	1	2	1.0	5.88%
Portunus haanii	梭子蟹	1	1	2	1.0	5.88%
Portunus sanguinoleutus	紅星梭子蟹	1	2	3	1.5	8.82%
Mollusca(軟體動物)						
Macoma sp.	白櫻蛤	4	2	6	3.0	17.65%
<i>Meretrix</i> sp.	文蛤	3	3	6	3.0	17.65%
Veremolpa sp.	簾蛤	4	1	5	2.5	14.71%
Pisces(魚類)						
Callionymidae	鼠銜魚		2	2	1.0	5.88%
總計		18	16	34	17	100%
<u>歧異度</u>		0.84	0.96	0.96		_

註:1.單位以(個/網)表示

2.採樣日期:88年8月

表2.11-5 核四施工環境監測海域生態岩礁區底棲無脊椎動物各季採樣之調查結果(續)

種類\季節		夏季
Echinostrephus aciculatus	白尖紫叢海膽	+++
Linckia laevigata	藍指海星	+
Ophiarachnella incrassata	巨綠蛇尾	+
Ophiocoma erinaceus	黑櫛蛇尾	+
Prionocidaris baculosa	環鋸棘頭帕海膽	+
Stomopneustes variolaris	口鰓海膽	+
Tripneustes gratilla	馬糞海膽	+
MOLLUSCA(軟體動物)		
Chama sp.	偏口蛤	+
Conus sacellus	芋螺	++
Coralliobia violacea	珊瑚螺	+
Cypraea arabica	阿拉伯寶螺	+
Cypraea caputserpentis	雪山寶螺	+
Hyypselodoris sp.	高澤海麒麟	+
Ovula ovum	大海兔螺	+
<i>Phyllidia</i> sp.	葉海麒麟	+
Pinctada margaritifera	黑蝶珍珠蛤	+
Tectus pyramis	銀塔鐘螺	+
Trochus sacellus	齒輪鐘螺	++
Vasum turbinellus	短拳螺	+
PORIFERA(海綿動物)		
Cliona sp.	穿孔海綿	+
<i>Halichondria</i> sp.	軟海綿	+
Suberrtes sp.		+
Xestospongia sp.	桶海綿	+

註: +++:豐富 ++:普通 +:稀少

表 2.11-6 核四施工環境監測海域生態岩礁區底棲無脊椎動物88年8月調查結果

種類\站別		澳底	鹽寮	合計	平均值	百分比		
Crustacea(甲殼動物)								
Gaetice depressus	平背蜞	14	3	17	8.50	30.91%		
Hemigrapsus penicillatus	絨毛近方蟹	2		2	1.00	3.64%		
Hemigrapsus sanguineus	肉球近方蟹	1	4	5	2.50	9.09%		
Metopograpsus thukuhar	方形大額蟹		1	1	0.50	1.82%		
Thalamita sp.	短槳蟹	1	1	2	1.00	3.64%		
Xanthidae	扇蟹	3	4	7	3.50	12.73%		
Echinodermata(棘皮動物)								
Holothroidea	海鼠綱	1	1	2	1.00	3.64%		
Mollusca(軟體動物)								
Cellana sp.	笠螺	3	2	5	2.50	9.09%		
Monodonta sp.	石疊螺	4	3	7	3.50	12.73%		
Nerita albicilla	漁舟蜑螺	3	1	4	2.00	7.27%		
Pisces(魚類)								
Gobiidae	鰕虎科	1	2	3	1.50	5.45%		
總計		33	22	55	27.5	100%		
歧異度		0.76	0.84					

註:1.單位以(個/50*50cm²)表示

2.採樣日期:88年8月

表2.11-7 核四施工環境監境海域生態仔稚魚種類與個體量88年7月調查結果

種類\站別	1	2	3	4	5	6	9	10	合計	平均值
魚卵	57	79	72	108	82	132	216	39	785	98.13

採樣日期:88年7月6日

註:1.個體量之單位為ind./1000m³,括弧內

表2.11-8 核四施工環境監海域生態成魚各季採樣之調查結果

	種名/季節		夏季
Acanthuridae(粗皮鯛科)			
	Acanthurus mata	馬塔粗皮鯛	+
	Prionurus microlepidotus	三棘天狗鯛	+
	Zanclus cornutus	角蝶魚	+
Apogonidae(天竺鯛科)			
	Apogon cyanosoma	金線天竺鯛	+
	Apogon doederleini	道氏天竺鯛	+++
	Apogon nitidus	褐條紋天竺鯛	+
	Apogon sp.	天竺鯛	+
Balistidae(鱗魨科)			
	Sufflamen chrysopterus	金鰭鱗魨	+
Blenniidae(鯝科)			
	Meiacanthus grammistes	四帶鯝	+
Caesionidae(烏尾冬科)	_		
	Pterocaesio diagramma	雙帶烏尾冬	+++
Chaetodontidae(蝶魚科)	3 -	· 	
The second secon	Chaetodon auriga	揚蟠蝶魚	+
	Chaetodon auripes	耳帶蝶魚	++
	Chaetodon speculum	鏡斑蝶魚	+
	Chaetodon sp.	蝶魚	+
	Heniochus acuminatus	白吻雙帶立旗鯛	+
Diodontidae(二齒魨科)	Tremeenae acammatae	口"分文门"元(1)六(1)	
Diodonidae ()	Diodon holocanthus	刺河魨	+
	Diodon petimba	班點河魨	+
Fistulariidae(馬鞭魚科)	Вюшон рентои	シェボロノー・これも	•
Tistulal fluac(My+K AR14)	Fistularia petimba	馬鞭魚	+
Gobiidae(鰕虎魚科)	risiuaria petimba	が対する	т
Cobildae (無双元無行)	Eviota sp.	鰕虎魚	
	Pterleotris sp.	殿虎無 鰕虎	+
Halasantridaa (今継色彩)	Fierteoiris sp.	职几	+
Holocentridae (金鱗魚科)	Sargacantran en	金鱗魚	
Monoconthidoo/ 器 标签式)	Sargocentron sp.	立際無	+
Monacanthidae(單棘魨科)	The area of a constant and a street	医基黑盐硷	
マー・エー・カー会 チャン	Thamnaconus modestus	馬面單棘魨	+
Kyphosidae(舵魚科)	36	IH. A	
	Microcanthus strigatus	柴魚	+
Labridae(隆頭魚科)		—	
	Choerodon azurio	寒鯛	+
	Coris gamard	蓋馬氏鸚鯛	+
	Gomphosus varlus	突吻鸚鯛	+
	Halichoeres argus	大眼儒艮鯛	+
	Halichoeres centiquadrus	四點儒艮鯛	+
	Labroides dimidiatus	半帶擬隆鯛	+
	Thalassoma hardwickii	哈氏葉鯛	+
	Thalassoma lunare	月斑葉鯛	+
	Tahlassoma lutescens	黃衣葉鯛	+
	Thalassoma sp.	葉鯛	+
Lutjanidae(笛鯛科)			
	<i>Lutjanus</i> sp.	笛鯛	+
Mullidae(鬚鯛科)			
	Parapercis indicus.	印度海鯡鯉	+
	Parupeneus multifasciatus	多帶海鯡鯉	+
	Parupeneus pleurotaenia	蓬萊海鯡鯉	+

註: +++:豐富 ++:普通 +:稀少

表2.11-8 核四施工環境監海域生態成魚各季採樣之調查結果(續)

	種名/季節		夏季
Muraenidae (鯙科)			
	Gymnothorax favagineus	黑斑裸胸鯙	+
	Gymnothorax sp.	裸胸鯙	+
Nemipteridae(金線魚科)			
	Scolopsis vosmeri	白頸赤尾冬	+
Ostraciontidae(箱魨科)			
	Ostracion immaculatus	四點箱魨	+
	Ostracion meleagris	細點箱魨	+
Pinguipedidae(虎鮃科)			
• .	<i>Parapercis</i> sp.	虎鮃	+
Pomacentridae(雀鯛科)			
•	Abudefduf vaigiensis	五帶豆娘魚	+
	Abudefduf bengalensis	孟加拉豆娘魚	+
	Amphiprion clarkll	克氏雙帶鋸齒蓋魚	+
	Chromis fumea	燕尾光鰓魚	++
	Chromis notatus	斑鰭光鰓魚	+
	Dascyllus trimaculatus	三點光鰓魚	++
	Pomacentrus coelestis	藍雀鯛	+++
	Stegastes fasciolatus	太平洋真雀鯛	+
Pseudochromidae(准雀鯛	科)		
	Dampieria cyclophthalmus	環眼准雀鯛	+
Scaridae(鸚哥魚科)			
	Scarus sordidus	白斑鸚哥魚	+
	Scarus sp.	鸚哥魚	+
Scorpaenidae(鮊科)			
-	Dendrochirus zebra	斑馬簑鮊	++
	Scorpaenopsis cirrhosa	鬼石狗公	+
Serranidae(脂科)			
	Cephalopolis pachycentro	橫帶鱠	+
Siganidae(臭都魚科)			
	<i>Siganus</i> sp.	臭都魚	+
Sphyraenidae(金梭魚科)			
	<i>Sphyraena</i> sp.	金梭魚	+
Tetradontidae (四齒魨科)			
	Canthigaster bennetti	笨氏尖鼻魨	+
	Canthigaster rivulata	網紋尖鼻魨	++
Zanclidae (角蝶科)			
	Zanclus cornutus	角蝶魚	++

註: +++:豐富 ++:普通 +:稀少

表2.11-9 核能四廠附近海域大型藻類調查結果(88年8月)

種類/測站		鹽寮	澳底				
Chlorophyta 綠藻植物門							
Boodlea composita	布氏藻	+	+				
Enteromopha intestinalis	腸滸苔	+ +	+				
Ulva fasciata	裂片石蓴	+ + +	+ + +				
Ulva lactuca	石蓴	+ +	+				
Valoniopsis pachynema	指枝藻	+	+				
Phaeophyta褐藻植物門	Phaeophyta褐藻植物門						
Sargassum duplicatum	重緣葉馬尾藻		+				
Phodophyta 紅藻植物門							
Chondrus ocellatus	角叉藻	+					
Eucheuma serra	鋸齒麒麟藻		+				
Gelidium amansii	石花菜	+	+				
Jania adhaerens	寬角叉珊藻	+					
Laurencia sp.	凹頂藻	+	+				
Pterocladia capillacea	異枝菜	+	+				
Sarcodia ceylanica	海木耳		+				

+: <5% 覆蓋度 ++: 5%~20% 覆蓋度 + + +: >20%覆蓋度

表 2.11-10 核四施工環境監測海域鹽寮附近不同水深各 隨機方塊區(50*50cm²)出現之珊瑚種數與覆蓋度

方塊區/水瀉	₹ 5.0M		7.5M		10M		12.5M	
	種數	覆蓋度	種數	覆蓋度	種數	覆蓋度	種數	覆蓋度
NO.1	3	45%	3	35%	2	20%	1	15%
NO.2	3	55%	2	25%	1	15%	1	15%
NO.3	4	50%	3	30%	2	25%	2	10%
NO.4	2	40%	3	35%	2	20%	1	10%
NO.5	5	40%	4	40%	3	25%	1	10%
平均	3.4	46%	3	33%	2	21%	1.2	12%

調查日期:88年8月

表 2.12-1 九孔養殖戶的經營型態

養的式	養 動式 海水		陸上	養殖	海上及阿	垫上養殖	小	計
經營方式	戸數	百分比	戸數	百分比	戸數	百分比	戸數	百分比
獨資	8	29.63%	1	3.70%	0	0.00%	9	33.33%
合資	9	33.33%	5	18.52%	4	14.81%	18	66.67%
合計	17	62.96%	6	22.22%	4	14.81%	27	100.00%

表 2.12-2 九孔養殖戶平均生產狀況

	銷路	養殖面積	產量	產值	單價	單位面積產量
年月		(平方公尺)	(公斤)	(元)	(元/公斤)	(公斤/平方公尺)
	6	2,224.00	900	780,000	867	0.41
84	7	2,224.00	4,800	3,681,600	767	2.16
	8	2,070.63	ı	1	-	-
	6	3,937.30	-	-	-	-
85	7	3,937.30	-	-	-	-
	8	3,937.30	-	-	-	-
	6	2,819.24	-	-	-	-
86	7	2,819.24	-	-	-	-
	8	2,819.24	-	-	-	-
	6	2,814.25	4,152	2,010,550	489	1.48
87	7	2,814.25	2,372	1,151,387	495	0.84
	8	2,814.25	1,619	869,387	516	0.58
	6	3,561.92	3,705	1,620,000	258	1.04
88	7	3,561.92	1,780	741,750	250	0.50
	8	3,561.92	-	_	_	_

註:"-"表該月該項無資料,因 6-8 月爲九孔放養時期,大都沒有收成。

資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國 88 年 7 月。

表 2.12-3 九孔養殖戶銷售狀況

T	銷路		魚販	自食或送人	自行銷售 (佔%)	餐廳 (450/)
年上		(佔%)	(佔%)	(佔%)	(伯%)	(佔%)
`	6	-	100	-	-	-
84	7	-	100	-	-	-
	8	-	ı	-	-	-
平	均	-	100	-	-	-
	6	48.77	1	1.15	50.08	-
87	7	42.70	ı	2.02	55.28	-
	8	27.04	ı	1.42	65.36	6.18
平	均	39.50	0.00	1.53	56.91	2.06
	6	100	-	-	-	-
88	7	100	-	-	-	-
	8	-	-	-	-	-
平	均	100	-	-	-	-

註:"-"表該項該月無資料,85、86年無資料。

表 2.12-4 九孔養殖戶平均成本

單位:元/戸

						T 12 70 7
年	成本	電費	飼料費	損耗維修費	薪資支出	總計
,	6	47,958.0	97,839.0	334,000.0	41,800.0	521,597.0
84	7	51,200.0	131,530.0	170,333.0	22,818.0	375,881.0
	8	8,806.2	93,944.4	10,000.0	61,000.0	173,750.7
	6	28,678.0	188,357.0	20,000.0	81,667.0	318,702.0
85	7	29,744.0	233,792.0	20,000.0	88,333.0	371,869.0
	8	30,678.0	297,371.0	2,756,550.0	81,667.0	3,166,266.0
	6	24,317.0	200,200.0	11,903.0	76,000.0	312,420.0
86	7	24,,659.0	206,030.0	72,364.6	76,000.0	379,053.6
	8	25,703.5	209,033.0	117,851.2	76,000.0	428,587.7
	6	111,896.9	139,864.6	229,346.6	174,902.8	656,010.9
87	7	40,990.0	138,161.9	122,680.0	134,681.8	436,513.7
	8	45,293.9	383,940.3	118,000.0	119,772.7	667,006.9
	6	51,293.9	149,211.6	124,000.0	85,125.0	409,630.5
88	7	26,489.7	160,469.8	20,500.0	73,714.3	281,173.8
	8	28,577.8	231,000.0	0.0	69,900.0	329,477.8

註:85年8月因受賀柏颱風影響,故單月之損耗維修費特別高。

資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國88年7月。

表 2.12-5 九孔養殖戶平均每平方公尺所花費的各項成本

單位:元/平方公尺

年	成本	電費	飼料費	損耗維修費	薪資支出
	6	21.6	44.0	150.2	18.8
84	7	23.0	59.1	76.6	10.3
	8	4.3	45.4	4.8	29.5
	6	7.3	47.8	5.1	20.7
85	7	7.6	59.4	5.1	22.4
	8	7.8	75.5	700.1	20.7
	6	8.6	71.0	4.2	27.0
86	7	8.7	73.1	25.7	27.0
	8	9.1	74.1	41.8	27.0
	6	39.8	49.7	81.5	62.1
87	7	14.6	49.1	43.6	47.9
	8	16.1	136.4	42.0	42.6
	6	14.4	41.9	34.8	23.9
88	7	7.4	45.1	5.8	20.7
	8	8.0	64.9	0.0	19.6

註:85年8月因受賀柏颱風影響,故單月之損耗維修費特別高。

表 2.12-6 漁撈戶每月之作業範圍

	項目	3 浬以內	3-6 浬	6-12 浬	12 浬以外
年	月	(佔%)	(佔%)	(佔%)	(佔%)
	6	86.84	13.16	-	-
84	7	91.97	8.03	-	-
	8	74.83	23.51	-	1.66
	6	91.63	8.37	-	-
85	7	74.09	25.91	-	-
	8	91.23	7.14	0.97	0.65
	6	53.37	9.82	27.61	9.20
86	7	59.82	28.31	3.65	8.22
	8	70.77	5.38	23.85	0
	6	60.00	30.27	-	9.73
87	7	42.61	50.00	-	7.39
	8	67.19	28.91	-	3.90
	6	71.98	25.82	1.10	1.10
88	7	59.57	36.52	-	3.91
	8	47.45	47.45	-	5.10

資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國88年7月。

表 2.12-7 漁撈戶每月出海次數

	項目	平均次數	5 次以下	6~10 次	11~15 次	16~20 次	21~25 次	26 次以上
年	月	(次)	(佔%)	(佔%)	(佔%)	(佔%)	(佔%)	(佔%)
	6	12	21.74	26.09	21.74	30.43	ı	-
84	7	13	20.00	40.00	8.00	16.00	8.00	8.00
	8	15	8.70	21.74	30.43	26.09	4.35	8.70
	6	12	23.81	28.57	14.29	33.33	1	1
85	7	12	20.00	40.00	8.00	20.00	4.00	8.00
	8	11	9.52	23.81	33.33	28.57	-	4.76
	6	8	15.00	70.00	10.00	5.00	-	-
86	7	24	5.26	42.11	36.84	5.26	10.53	-
	8	8	25.00	50.00	18.75	6.25	1	1
	6	10	11.11	50.00	27.78	11.11	-	-
87	7	14	-	41.17	17.65	23.53	17.65	-
	8	13	20.00	30.00	15.00	15.00	20.00	-
	6	9	21.05	36.84	31.58	10.53	-	-
88	7	14	15.00	15.00	25.00	25.00	20.00	_
	8	13	20.00	30.00	25.00	-	15.00	10.00

表 2.12-8 漁撈戶各月作業漁法作業次數百分比

	項目	拖網	沿岸採捕	圍網	燈火漁業	牽魩仔	刺網	曳繩釣	一支釣	延繩釣	定置網	飛魚卵
年	月	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
	6	7.69	-	3.85	23.08	3.85	50.00	7.69	-	3.85	-	-
84	7	-	-	-	20.00	-	52.00	4.00	16.00	4.00	4.00	-
	8	-	-	1	21.42	-	35.71	-	39.28	3.57	-	-
	6	-	-	4.76	9.52	4.76	1	-	14.29	52.38	9.52	-
85	7	4.00	-	1	12.00	-	8.00	48.00	8.00	8.00	8.00	-
	8	-	-	-	28.57	-	7.14	42.86	-	-	21.43	-
	6	-	43.75	-	37.5	-	-	-	6.25	-	-	12.50
86	7	-	28.00	-	40.00	-	8.00	-	24.00	-	-	-
	8	-	33.33	-	42.86	-	4.76	-	19.05	-	-	-
	6	-	33.33	-	11.11	-	11.11	-	38.89	5.56	-	-
87	7	-	29.42	-	5.88	-	11.76	-	47.06	5.88	-	-
	8	-	29.42	-	5.88	-	15.00	-	35.00	5.00	-	-
	6	-	36.84	-	20.06	-	10.53	5.26	15.79	5.26	-	5.26
88	7	-	35.00	-	30.00	-	15.00	5.00	10.00	5.00	-	-
	8	-	35.00	-	30.00	-	10.00	5.00	15.00	5.00	-	-

表2.12-9 漁撈戶每月之平均漁獲產量

單位:公斤/元

	項目	赤	鯮	赤	尾	飛魚	到	煙管	管仔	煙仔	子魚	白帶	魚	小	卷	煙仔	虎
年	月	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值
	6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
84	7	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-
	8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	6	1	-	-	-	-	-	1	-	-	-	-	1	-	-	-	_
85	7	-	1	1	-	-	-		-	-	-	-	-	-	-	-	-
	8	1	-	-	-	-	-	1	-	-	-	-	1	-	-	-	-
	6	175.8	89,090	73.5	788	1,253	344,120	5,845	66,235	539.7	9,895	138	57,500	63	11,346	109.5	7,450
86	7	70.5	36,910	126	3,100	316	44,240	6,307.5	86,000	2,174.7	24,186	435.2	13,952	44.6	9,611	16.8	1,680
	8	62.4	5,200	133.2	4,327.5	-	-	1,990.5	30,066	3,306.5	34,770	30	4,500	55.7	10,723	30	1,500
	6	155	86,467	1,080	8,100	-	-	-	-	-	-	37.8	1,580	271.8	64,690	315.6	17,955
87	7	561.7	261,965	-	-	-	-	2,317.2	37,192	-	-	148.2	23,190	547.1	142,620	2,568.6	42,810
	8	247	138,114	1,574	28,160	-	-	-	-	-	-	490.2	32,090	1,743.9	290,581	561	28,150
	6	35.2	15,339	1.8	60	624	76,480	4,633.9	64,364	11	216	22.8	790	21.3	4,273	-	-
88	7	62.2	30,967	1.8	60	7	1,440	7,336.9	97,042	120	1,500	27.1	3,627	39.6	9,172	-	-
	8	131	65,467	-	-	-	-	5,026.9	73,454	3,231	40,388	4.5	425	163.9	27,410	-	-

	項目	軟約	絲	黑	毛	白	毛	糸 I.1	柑	龍	蝦	海	膽	魩任	子魚	雜	魚
年	月	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值	產量	價值
	6	57	32,983	13	5,930	26	10,640	21.3	21,550	38.3	37,813	53.0	46,833	-	-	185.0	46,352
84	7	50	33,281	17	8,567	41	23,228	66.9	30,800	42.0	41,688	127.5	110,875	300	50,000	331.0	31,656
	8	46.3	25,733	66	18,500	61.5	18,400	17.8	5,917	67.0	42,243	9.0	6,317	-	-	241.5	35,041
	6	57	32,983	13	5,930	26	10,640	29	31,650	38.3	37,813	-	-	-	-	185.0	46,352
85	7	52	32,625	17	8,567	41	23,228	98	30,800	42.0	41,688	-	=	=.	=.	212.0	20,710
	8	40	16,548	66	18,500	44	11,000	18	2,002	60.0	55,000	-	-	-	-	324.0	35,135
	6	-	-	0.6	120	5.8	1,852	-	-	24.1	25,315	10.2	11,917	-	-	59.4	11,150
86	7	5.3	2,600	-	-	-	-	2.7	1,125	22.8	20,550	7.2	7,977	120	25,000	133.4	14,641
	8	4.9	2,142	-	-	35.1	11,900	90.8	18,570	19.05	18,300	13.8	15,975	-	-	51.1	10,956
	6	6	3,000	-	-	0.9	300	-	-	6.3	7,300	-		=.	-	1,975.5	183,700
87	7	42.4	20,388	-	-	74	24,241	206.1	69,450	29.6	28,714	40.8	4,744	=.	=.	157.8	25,039
	8	135.3	57,759	4.1	937	23.3	72,000	39.9	13,000	24.3	150,480	19.0	22,181	-	-	423	33,045
	6	1.8	768	-	-	11.1	3,850	-	-	37.1	31,100	11.4	8,001	-	-	32.2	15,693
88	7	10	1,823	-	-	11.1	3,850	12	4,000	35.6	30,125	18.5	12,950	-	-	28.5	7,588
	8	10.5	4,802	0.8	250	31.3	11,481	111.7	30,150	25.2	30,404	8.7	6,113	-	-	15.5	2,892

註:"-"表示該月無該魚種的產量。 資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國 88 年 7 月。

表 2.12-10 漁撈戶銷售狀況

單位:%

	AV n.b.						
年 .	銷路 月	承銷商	魚販	餐廳	自食或送人	自行銷售	其他
	6	4.55	13.64	17.73		64.09	
84	7	4.00	18.00	16.80		61.20	
	8	21.90	15.24	10.00	4.76	48.10	
	6	1.34	27.26	18.17		53.24	
85	7	0.74	12.28	21.85		65.00	
	8	4.43	1.44	1.60		92.53	
	6	45.46	8.03	0.41	1.95	7.99	36.16
86	7	43.42	13.78	0.06	2.44	15.85	24.45
	8	53.6	7.60	0.87	0.63	13.56	23.74
	6	2.24	11.49	0.43	2.2	9.27	74.37
87	7	1.26	37.15	2.77	19.69	37.58	1.84
	8	0.13	5.34	0.37	2.08	5.8	86.27
	6	47.32	22.22	2.38	1.56	26.53	
88	7	97.38	0.49	0.02	0.21	1.90	
	8	27.58	38.74	0.24	3.41	30.04	

資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國 88 年 7 月。

表 2.12-11 漁撈戶平均成本

單位:元/月/戸

年	成本 月	燃料油費	飼料費	雜支費	維修費	總計
	6	4,829	5,538	2,595	16,600	29,562
84	7	8,300	8,667	9,104	9,104	35,091
	8	5,120	4,433	14,979	14,979	27,927
	6	3,852	5,538	9,500	9,500	21,485
85	7	5,954	8,667	9,203	9,203	32,844
	8	5,398	4,433	6,550	6,550	20,495
	6	6,627	3,750	3,367	3,367	16,498
86	7	7,114	6,213	1,120	1,120	17,205
	8	5,605	2,095	3,734	3,734	13,784
	6	7,413	2,335	3,447	3,447	17,123
87	7	6,331	2,250	7,150	7,150	18,437
	8	11,997	3,625	9,687	9,687	31,398
	6	6,652	1,917	5,500	5,500	18,205
88	7	7,264	2,497	5,850	5,850	19,222
	8	11,907	3,725	18,200	18,200	40,879

單位:艘

	ı		1			ı	ı			122 - 132
港別	龍洞	和美	美灩山	澳底	福隆	龍門	卯澳	馬崗	不詳	合計
一支釣	1			2			2	1		6
棒受網	13	3	4	37	15		4	6		82
延繩網	6	2	6	35	8		8	8	1	74
底延繩釣	18		5	57	16	4	11	10	1	122
鏢 旗 魚				7	1			1		9
流網	1			4	1			1		7
底 刺 網					1					1
巡護船				1						1
單船拖網				2						2
焚 寄 網	1			4						6
不 詳				2						2
總計	40	5	15	151	42	4	25	27	3	312

資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國 88 年 7 月。

表 2.12-13 貢寮地區 1999 年 6 月~1999 年 8 月燈火漁業標本戶作業情形

		1 101-01	
月 別	6月	7月	8月
標本戸數	9	9	9
總作業天數	111	201	168
平均作業天數(<i>天/月/戸</i>)	12	22	19
總漁獲量(公斤)	24,894	61,830	33,741
總漁獲金額(元)	631,377	1,194,552	1,034,910
平均漁獲量(<i>公斤/月/戸</i>)	2,766	6,870	3,749
平均漁獲金額(元/月/戸)	70,153	132,728	114,990
CPUE(公斤/天/月/戸)	224	308	201
IPUE(元/天/月/戸)	5,688	5,943	6,160

表 2.12-14 貢寮地區 1999 年 6 月~1999 年 8 月刺網漁業之 CPUE 及 IPUE

月別項目	六月	七月	八月	合計	平均
樣本戸數	6	5	5	16	5.3
平均作業天數(天/月/戸)	11.0	9.2	6.8	27.0	9.0
平均漁獲重量(公斤/月/戸)	132.0	75.3	227.6	434.9	145
平均漁獲產値(元/月/戸)	41,823	27,988	48,870	118,681	39,560
CPUE(公斤/天/月/戸)	12.0	8.2	33.5		17.9
IPUE(元/天/月/戸)	3,802	3,042	7,187		4,677

資料來源:台電公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國 88 年 7 月 \circ

月別項目	六月	七月	八月	合計	平均
樣本戸數	9	9	11	29	9.7
平均作業天數(天/月/戸)	10.7	12.0	11.8	34.5	11.5
平均漁獲重量(公斤/月/戸)	126.8	93.9	102.6	323.3	107.8
平均漁獲產値(元/月/戸)	39,330	31,641	38,498	109,469	36,490
CPUE(公斤/天/月/戸)	11.9	7.8	8.7		9.5
IPUE(元/天/月/戸)	3,676	2,637	3,263		3,192

表2.13-1 核四施工環境監測海象調查本季沿岸潮汐調查結果

月份	88	年 7 月	88	年 8 月	88	年 9 月
項目	高度(公尺)	發生時間(時分/日)	高度(公尺)	發生時間(時分/日)	高度(公尺)	發生時間(時分/日)
最高潮位	0.84	0550/13	0.82	0640/12	0.88	0340/23
大潮平均高潮位	0.61		0.64		0.57	
平均高潮位	0.57		0.58		0.56	
小潮平均高潮位	0.48		0.56		0.58	
平均潮位	0.32		0.31		0.29	
小潮平均低潮位	0.14		0.16		0.17	
平均低潮位	0.06		0.05		0.01	
大潮平均低潮位	-0.01		-0.05		-0.13	
最低潮位	-0.44	1420/14	-0.37	1320/11	-0.36	0300/29
最大潮差	1.27	0550/13 To 1340/13	1.18	0600/11 To 1320/11	1.05	0520/24 To 1300/24
平均潮差	0.51		0.53		0.56	
最小潮差	0.01	1520/21 To 1820/21	0.01	1900/21 To 2100/21	0.04	2110/19 To 0020/20

調查時間:88年7到9月。

資料來源:台電公司電源勘測隊提供。

表 2.14-1 核四施工環境監測本季實際遊客人數調查結果

單位:人數

日期			地點	福隆海水浴場	鹽寮海濱公園
	7月17日	(六)	(晴)	1,347	268
非假日	8月7日	(六)	(陰/雨)	712	552
	9月4日	(六)	(晴)	345	643
	7月25日	(日)	(晴/雨)	1,712	1,791
假日	8月8日	(日)	(晴)	1,235	1,552
	9月5日	(日)	(晴)	549	1,201

註:遊客人數調查時間爲上午八時至下午五時。

表 2.14-2 核四施工環境監測本季門票數調查結果

單位:人次

	Ī	逼隆海水浴場	<u>=</u>	龍門渡假中心				
月 份	88年7月 88年8月 88年9			88年7月 88年8月 88年9				
遊客門票數	19,812	15,488	7,605	4,381	9,195	6,472		

表 2.14-3 本季各觀景點自然完整性之評分明細表

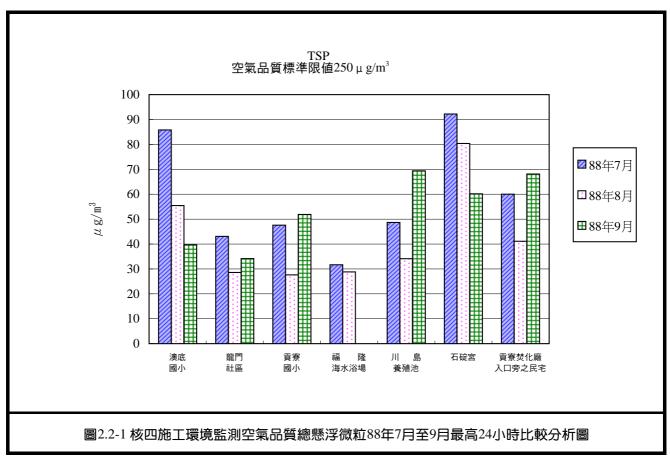
	觀景點 月份	第	一觀景	點	第	二觀景	點	第	三觀景	點	第	四觀景	點	第五額	鼠景點	(西向)	第五額	親景點((北向)
項目		7月	8月	9月	7月	8月	9月	7月	8月	9月									
	坡度	5	5	5	5	5	5	3	3	3	3	3	3	3	3	3	5	5	5
景	土壤與環境對比程度	5	5	5	5	5	5	3	3	3	3	3	3	5	5	5	5	5	5
觀破	改變類別	5	5	5	5	5	5	3	3	3	3	3	3	3	3	3	5	5	5
壞	改變面積	3	3	3	5	5	5	5	5	5	3	3	3	5	5	5	5	5	5
	觀景距離	1	1	1	1	1	1	3	3	3	3	3	3	5	5	5	5	5	5
景	美化材類與自然配合度	5	5	5	3	3	3	3	3	3	1	1	1	1	1	1	1	1	1
觀美	立地再被覆性	5	5	5	5	5	5	3	3	3	1	1	1	3	3	3	1	1	1
化	土壤穩定性	5	5	5	5	5	5	3	3	3	3	3	3	3	3	3	3	3	3
	總分	34	34	34	34	34	34	26	26	26	20	20	20	28	28	28	30	30	30
自然	、完整性程度	高	高	高	高	高	高	中	中	中	中	中	中	中	中	中	高	高	高

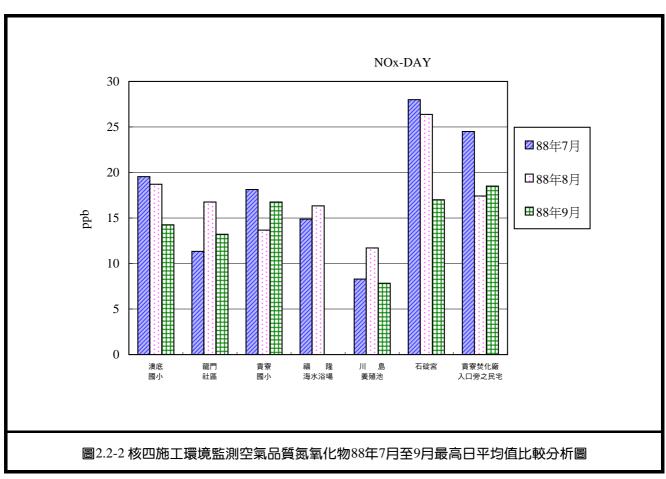
- 註:1.總得分8~18屬低自然完整性。
 - 2.總得分 19~29 屬中自然完整性。
 - 3.總得分30~40屬高自然完整性。
 - 4.第五觀景點(南向)、第六觀景點及第七觀景點目前尚無任何開發破壞,暫不評分。
 - 5.第五觀景點(北向)自88年6月起因重件碼頭進行海域工程施工,故予以評分。

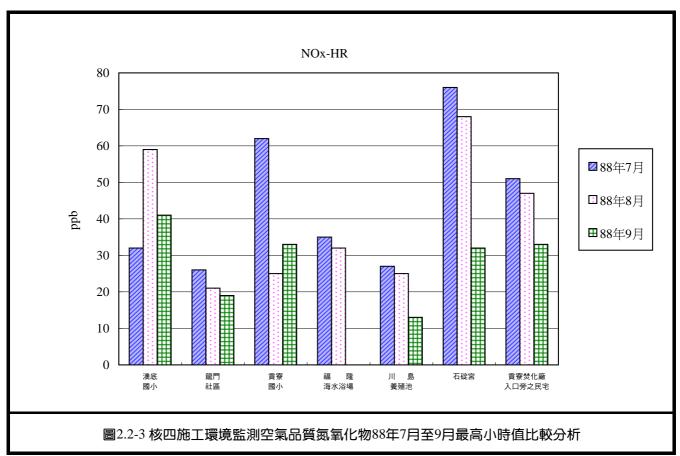
表2.15-1 核四施工環境監測本季海域底質漂砂採樣點編號表

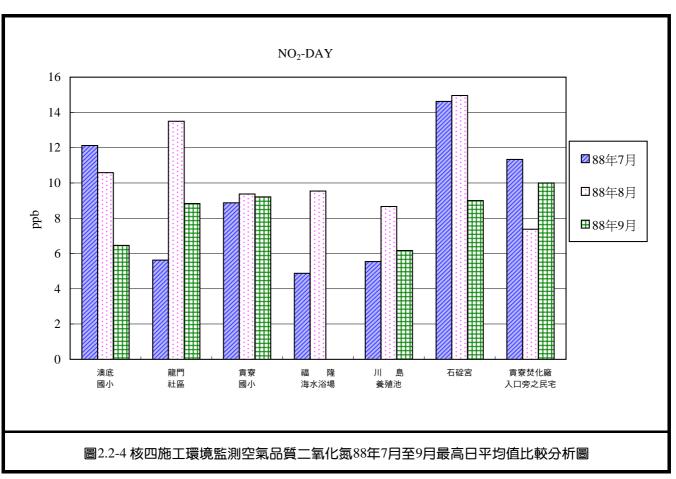
採樣點	採様結果
1	無砂樣(爲礁盤)
2	無砂樣(爲礁盤)
3	無砂樣(爲礁盤)
4	無砂樣(爲礁盤)
5	無砂樣(爲礁盤)
6	無砂樣(爲礁盤)
7	無砂樣(爲礁盤)
8	無砂樣(爲礁盤)
9	有,砂樣編號為 9
1 0	無砂樣(爲礁盤)
1 1	無砂樣(爲礁盤)
1 2	有,砂樣編號爲12
1 3	有,砂樣編號爲13
1 4	有,砂樣編號為14
1 5	有,砂樣編號為15
1 6	有,砂樣編號為16
1 7	有,砂樣編號為17
1 8	有,砂樣編號爲18
1 9	有,砂樣編號爲19
20	有,砂樣編號爲20

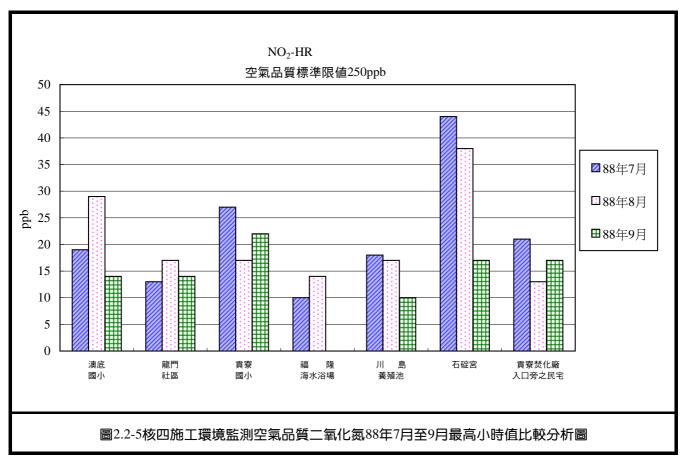
表2.15-2 核四施工環境監測本季海灘漂砂採樣點編號表

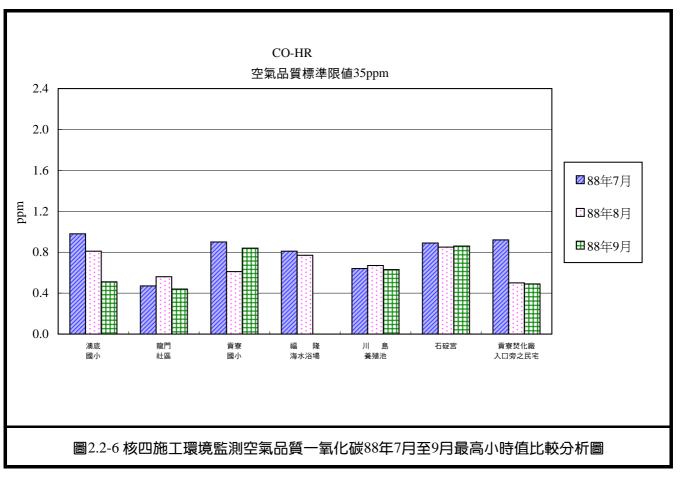

採樣點	採樣結果
1	無砂樣(皆爲礁盤)
2	石碇溪口高潮線砂樣編號2-H, 石碇溪口低潮線砂樣編號為2-L
3	鹽寮高潮線砂樣編號為3-H, 鹽寮低潮線砂樣編號為3-L
4	海濱高潮線砂樣編號為4-H, 海濱低潮線砂樣編號為4-L
5	橋北高潮線砂樣編號為5-H, 橋北低潮線砂樣編號為5-L
6	內河大橋高潮線砂樣編號為6-H, 內河大橋低潮線砂樣編號為6-L

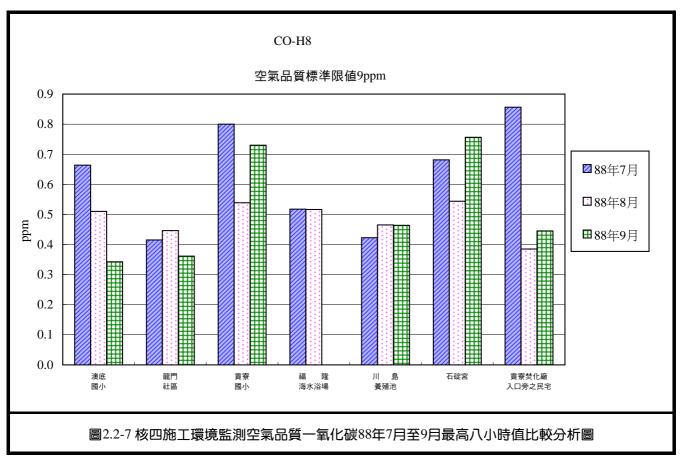

表2.15-3 核四施工環境本季海域水樣之含砂量分析表

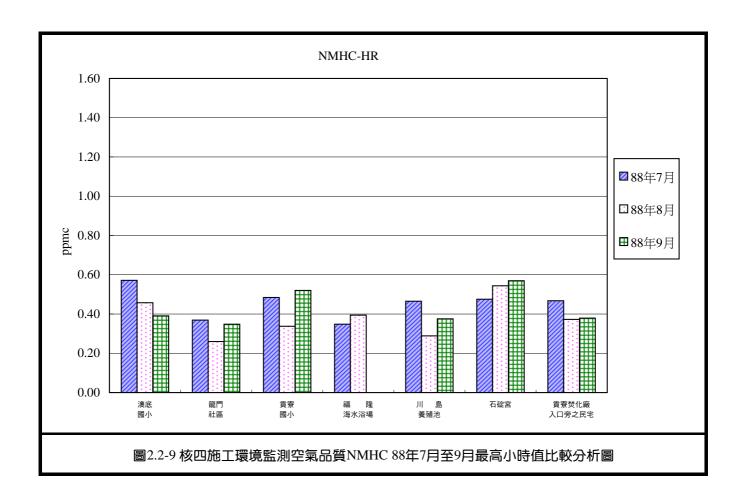

樣 號	深度(公尺)	水樣總重(克)	含砂量(克)
1U	0.5	2873.6	0
1M	7	2998.1	0
1D	1 4	3 0 4 5 . 7	0
2U	0.5	3102.5	0
2M	1 0	2988.3	0
2D	2 0	2956.4	0
3U	0.5	3004.8	0
3M	1 2	3105.8	0
3D	2 4	2863.1	0
4U	0.5	2933.9	0
4M	1 4	3184.1	0
4D	2 8	3068.6	0
5U	0.5	3 1 5 5 . 2	0
5M	4	3 2 4 3 . 4	0
5D	8	3200.8	0
6U	0.5	3106.9	0
6M	6	3007.9	0
6D	1 2	2896.7	0
7U	0.5	2840.5	0
7M	1 0	2963.7	0
7D	2 0	3146.0	0
8U	0.5	3045.9	0
8M	1 4	3181.3	0
8D	2 8	3285.6	0
9U	0.5	3 3 0 4 . 7	0
9M	4	3058.9	0
9D	8	2966.1	0
10U	0.5	3146.3	0
10M	6	3184.8	0
10D	1 2	3019.5	0

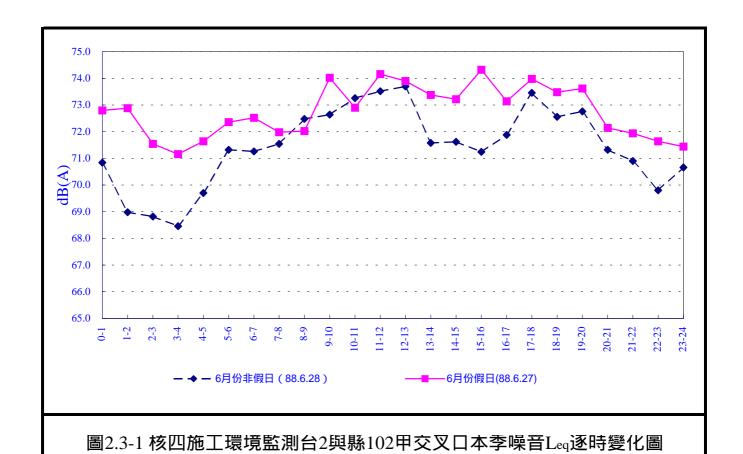

表 2.15-3 核四施工環境監測本季海域水樣之含砂量分析表(續)

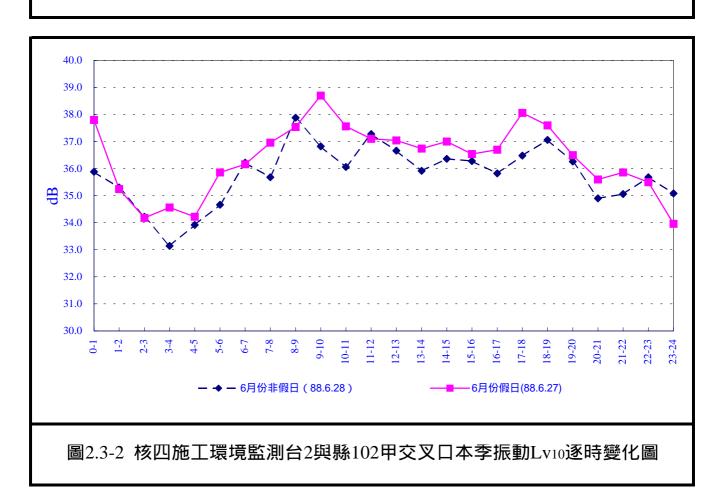

樣號	深 度(公尺)	水樣總重(克)	含砂量(克)
11U	0.5	3 2 4 8 . 7	0
11M	5	3261.6	0
11D	1 0	3057.4	0
12U	0.5	3122.2	0
12M	1 2	3256.9	0
12D	2 4	3001.6	0
13U	0.5	2983.4	0
13M	3	3105.8	0
13D	6	3166.7	0
14U	0.5	3025.4	0
14M	6	3309.5	0
14D	1 2	3007.3	0
15U	0.5	2866.4	0
15M	6	2963.1	0
15D	1 2	3009.0	0
16U	0.5	3 1 5 2 . 3	0
16M	8	3108.7	0
16D	1 6	3052.6	0
17U	0.5	3108.7	0
17M	4	3 2 4 3 . 9	0
17D	8	3186.7	0
18U	0.5	3300.5	0
18M	4	3191.4	0
18D	8	3113.8	0
19U	0.5	3226.7	0
19M	5	3167.8	0
19D	1 0	3076.6	0
20U	0.5	3008.4	0
20M	5	3125.9	0
20D	1 0	3218.6	0

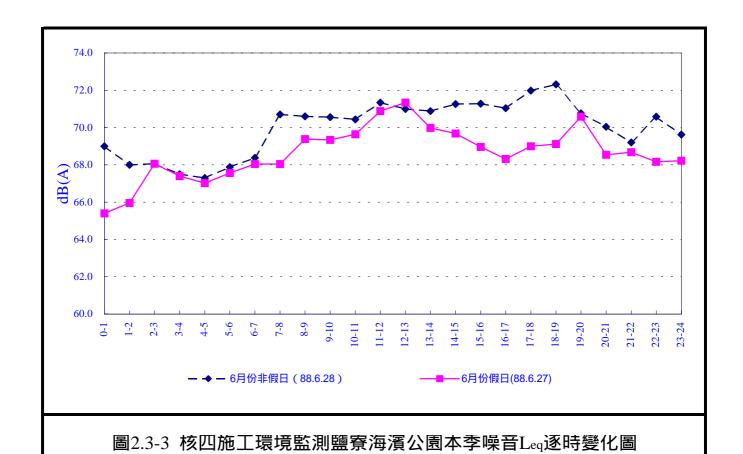


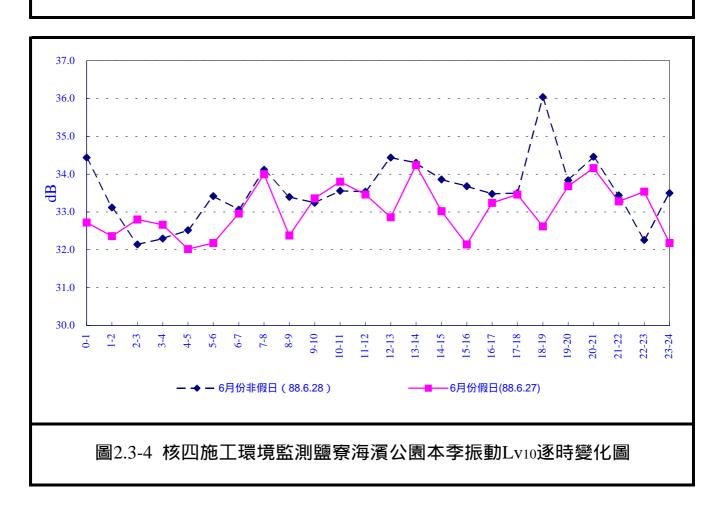


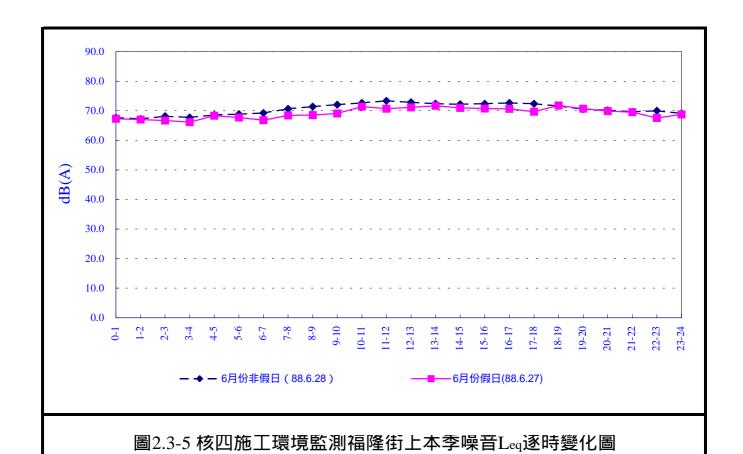


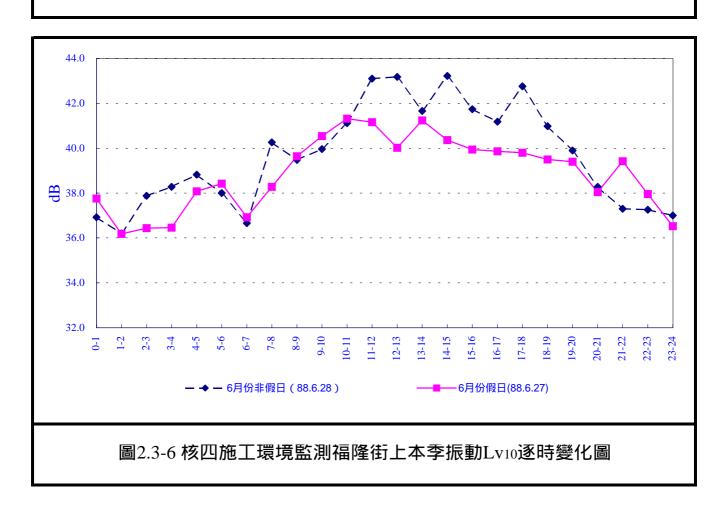












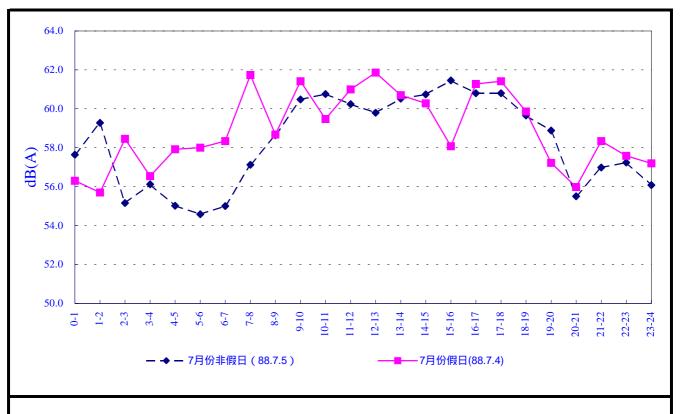
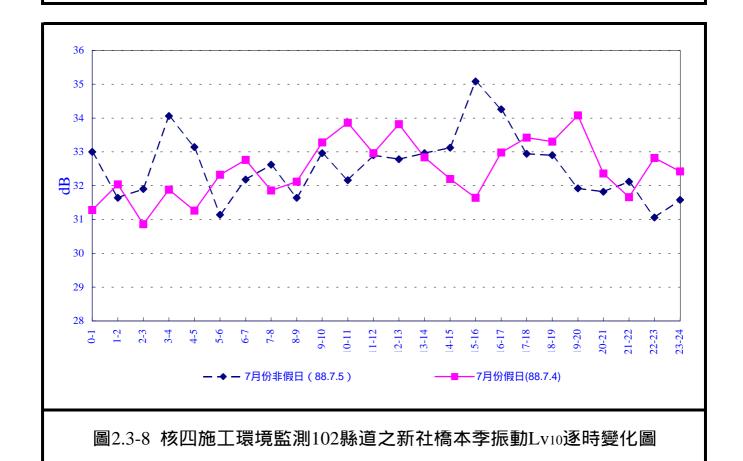



圖2.3-7 核四施工環境監測102縣道之新社橋本李噪音Leg逐時變化圖

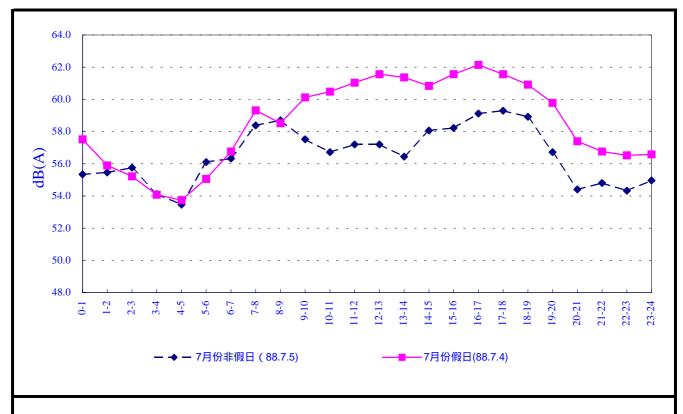
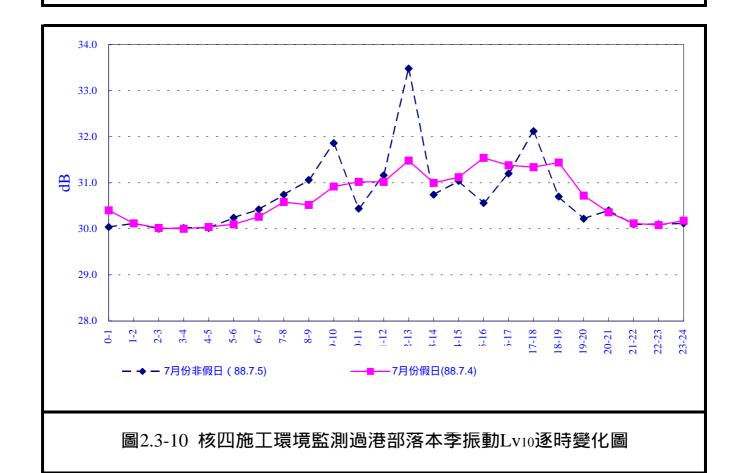



圖2.3-9 核四施工環境監測過港部落本季噪音Leg逐時變化圖

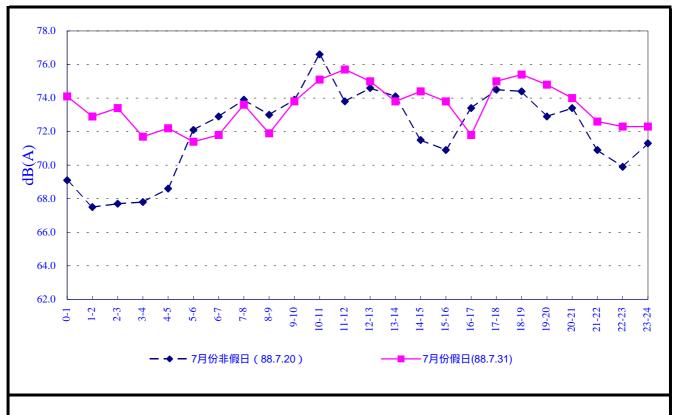
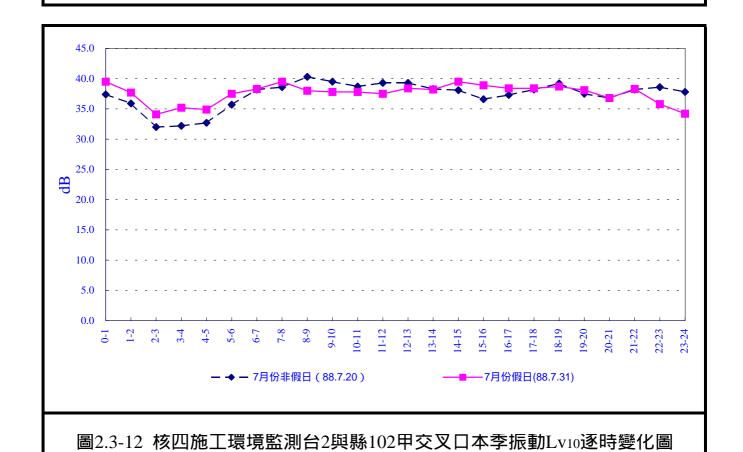



圖2.3-11 核四施工環境監測台2與縣102甲交叉口本季噪音Leq逐時變化圖

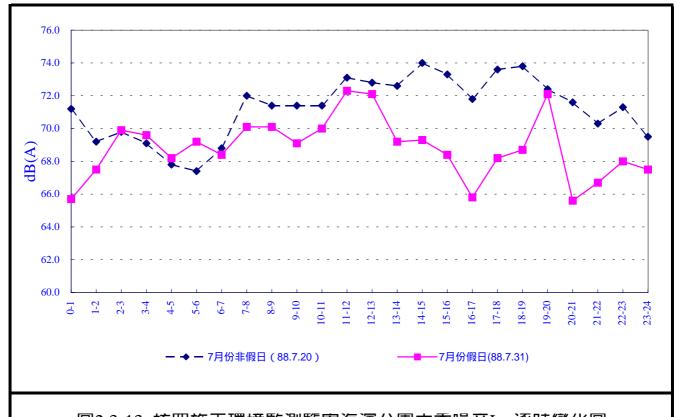
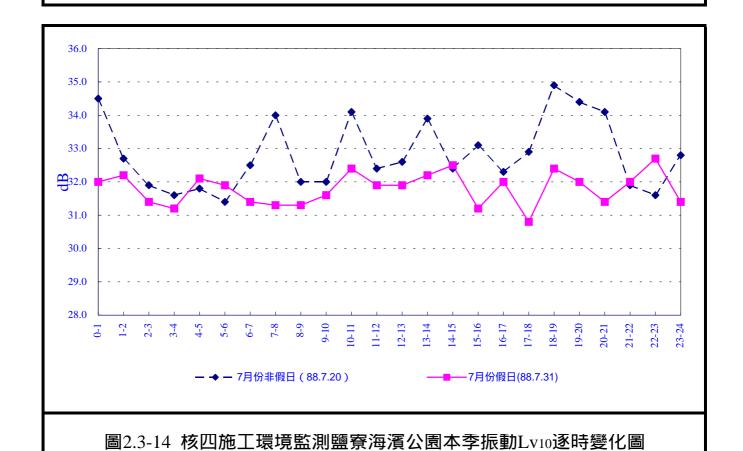



圖2.3-13 核四施工環境監測鹽寮海濱公園本季噪音Leq逐時變化圖

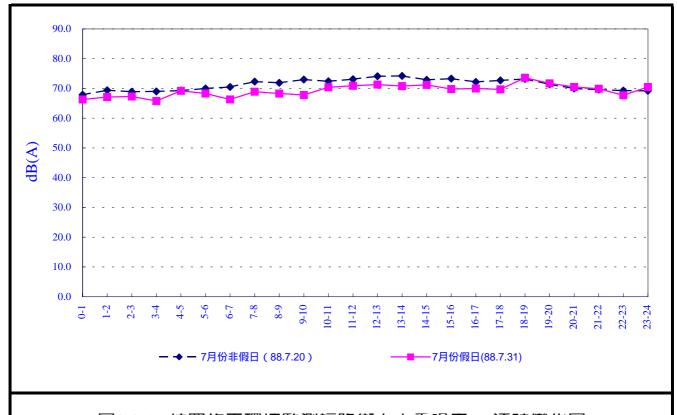
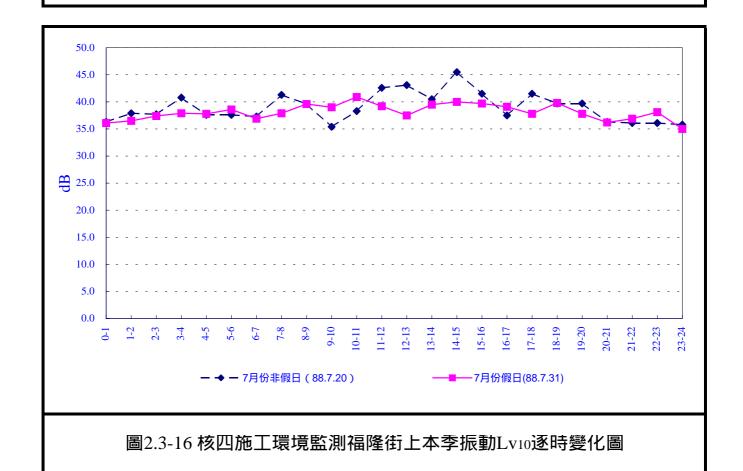



圖2.3-15 核四施工環境監測福隆街上本季噪音Leq逐時變化圖

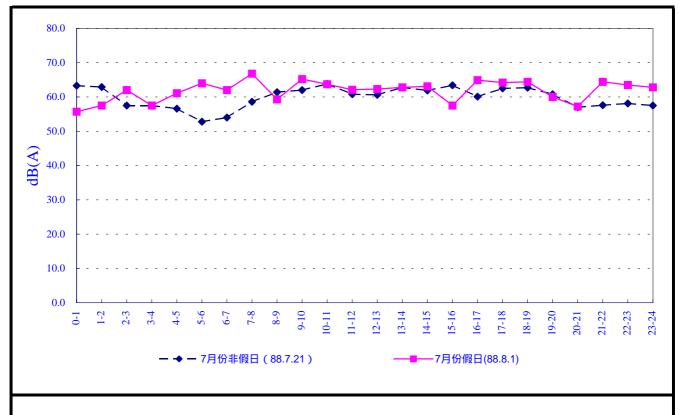


圖2.3-17 核四施工環境監測102縣道之新社橋本季噪音Leq逐時變化圖

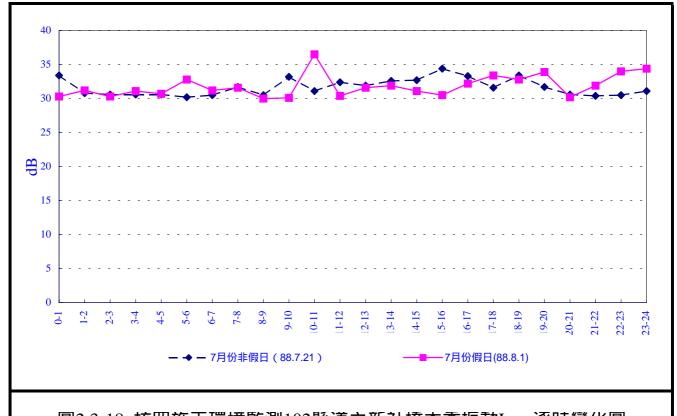


圖2.3-18 核四施工環境監測102縣道之新社橋本季振動Lv10逐時變化圖

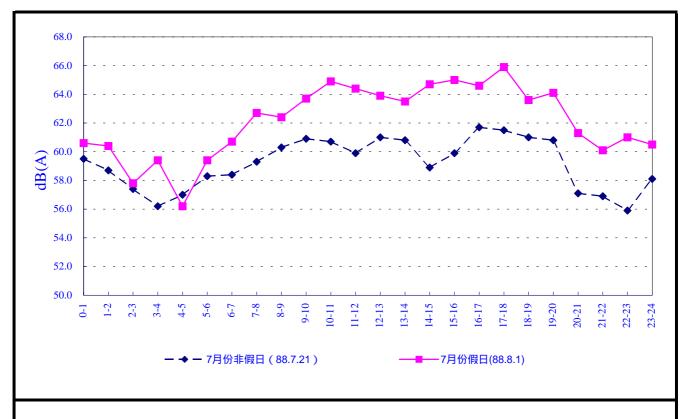
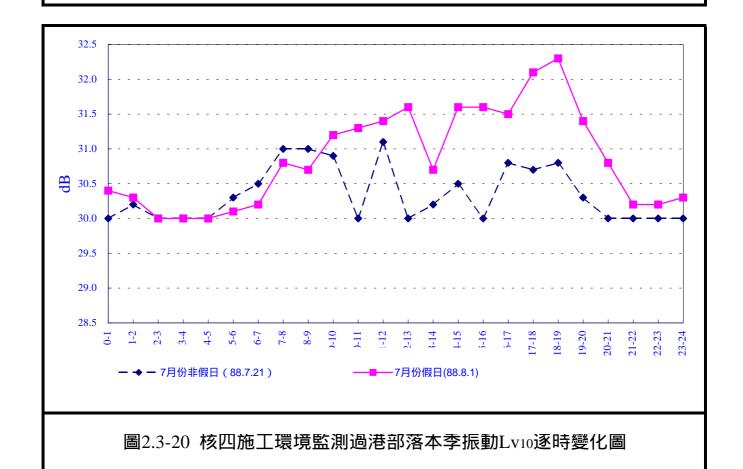



圖2.3-19 核四施工環境監測過港部落本季噪音Leq逐時變化圖

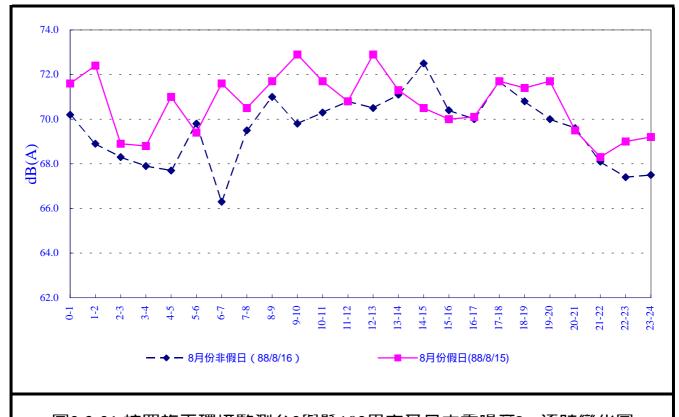
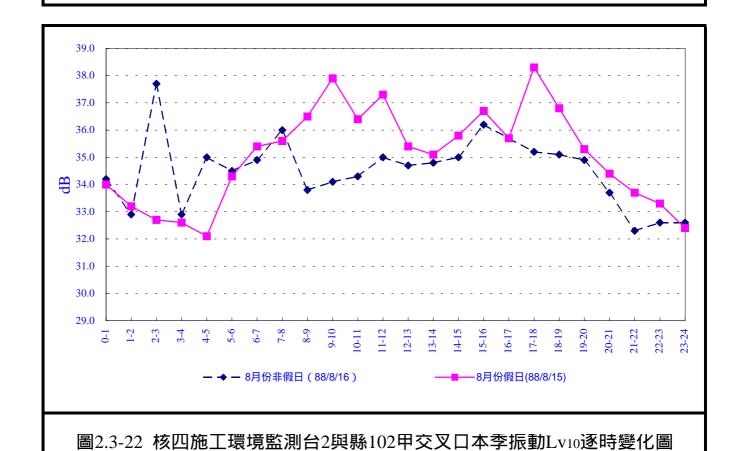
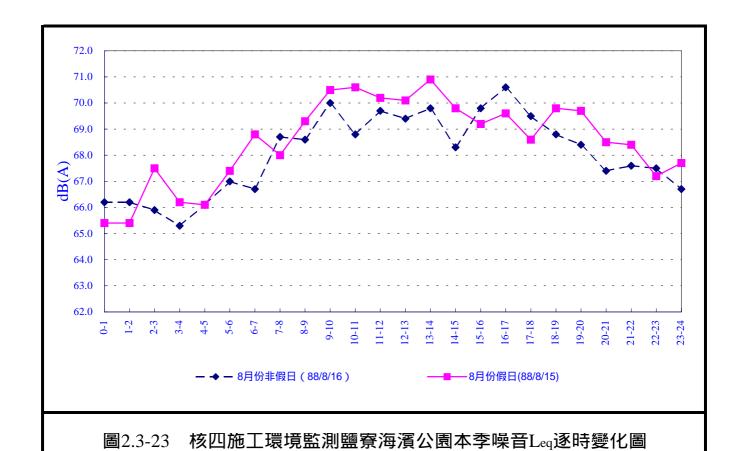
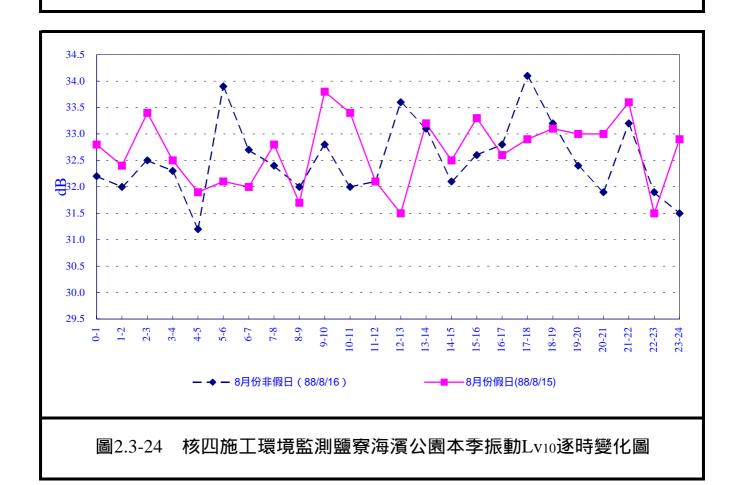





圖2.3-21 核四施工環境監測台2與縣102甲交叉口本季噪音Leq逐時變化圖

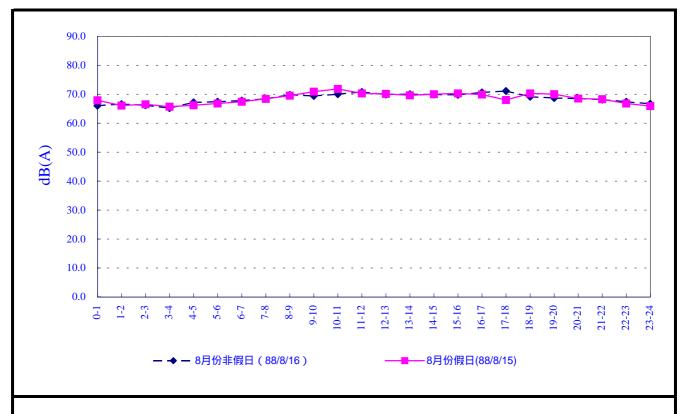
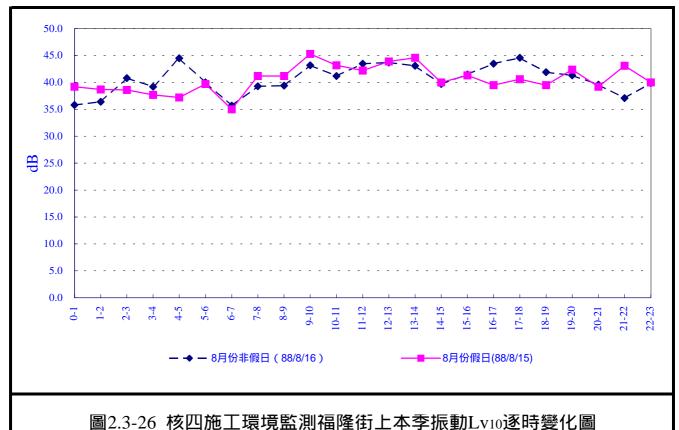
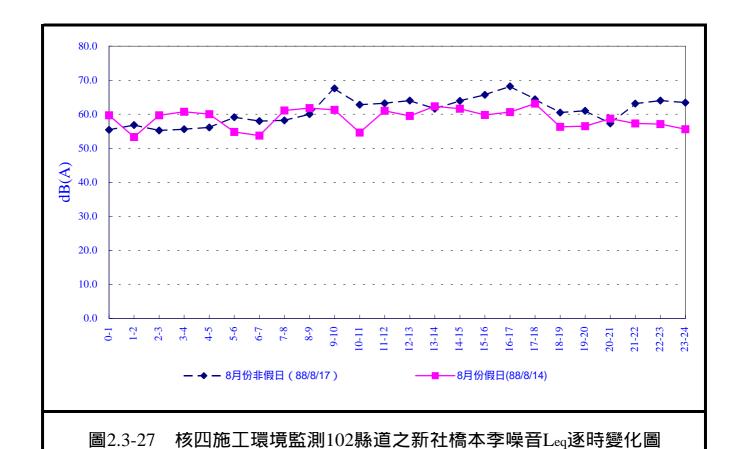
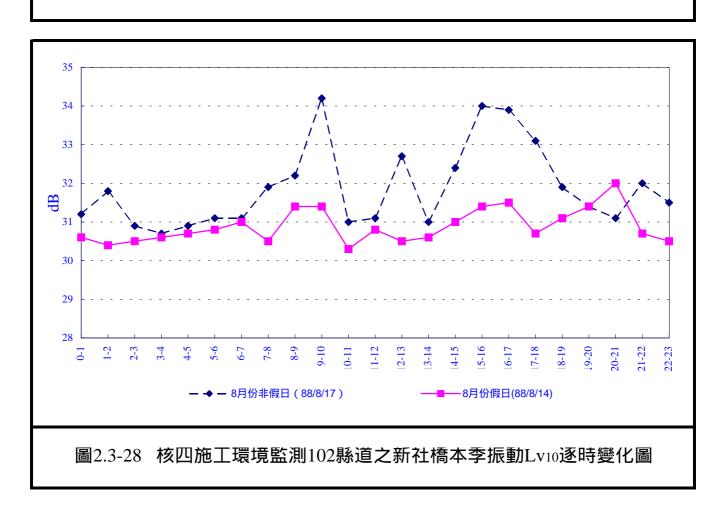





圖2.3-25 核四施工環境監測福隆街上本季噪音Leg逐時變化圖

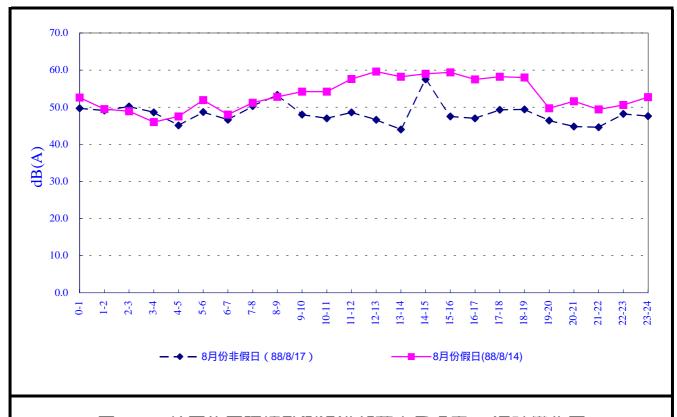
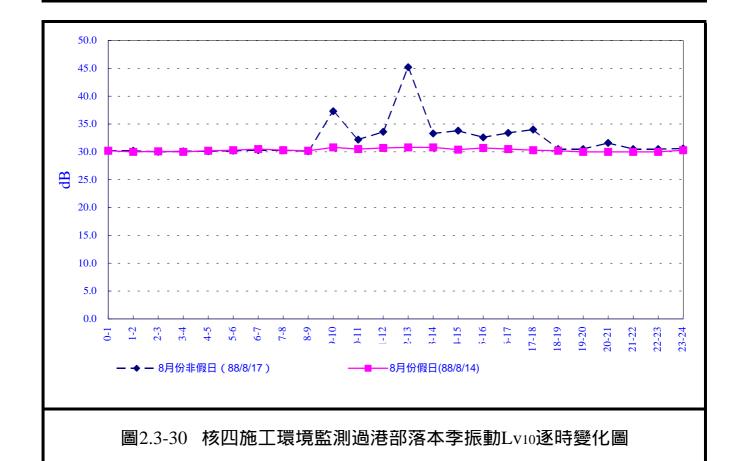



圖2.3-29 核四施工環境監測過港部落本季噪音Leq逐時變化圖




圖2.3-31 核四施工環境監測台2與縣102甲交叉口本季噪音Leq逐時變化圖

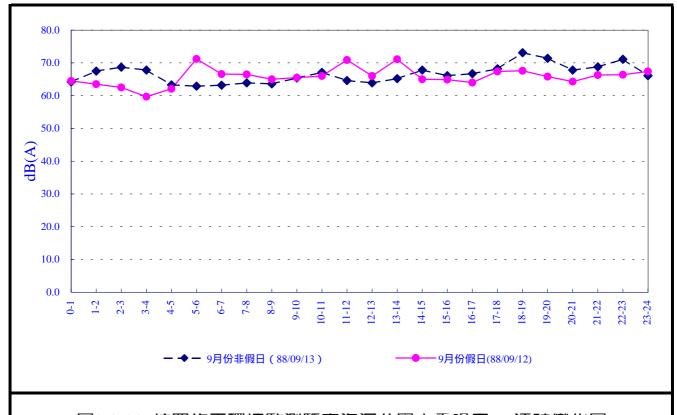


圖2.3-33 核四施工環境監測鹽寮海濱公園本季噪音Leq逐時變化圖

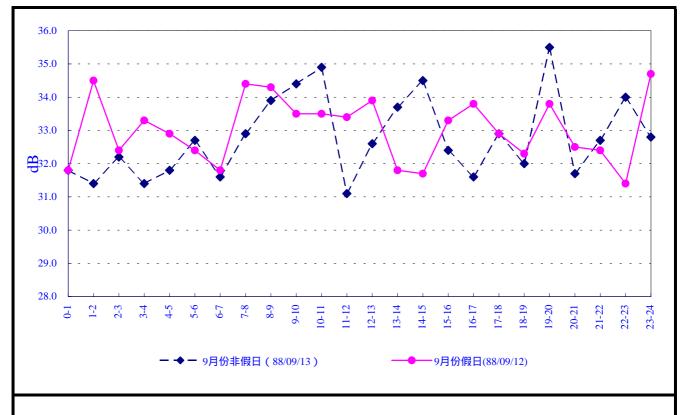
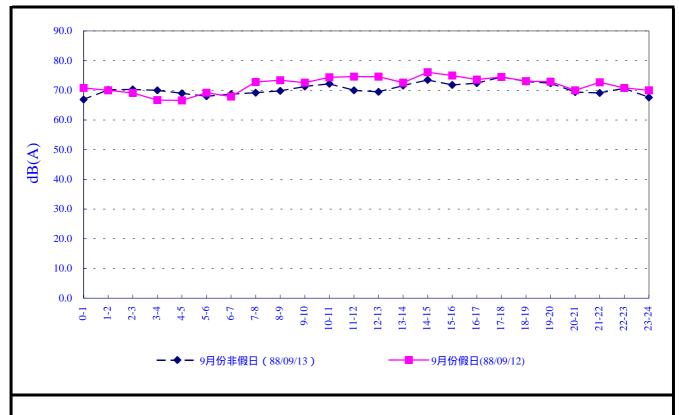
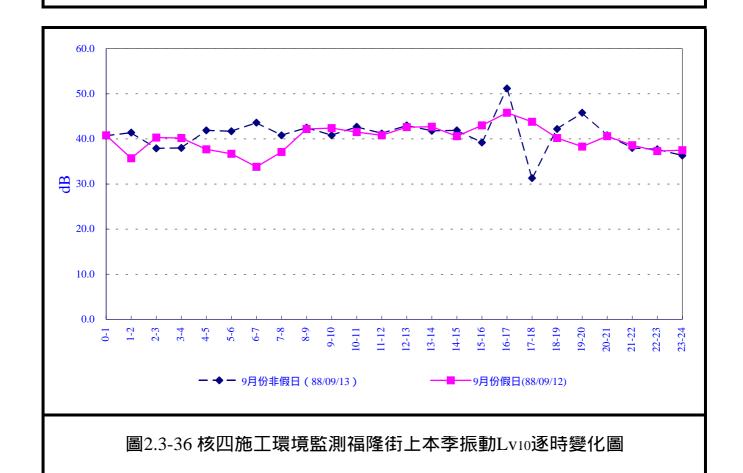
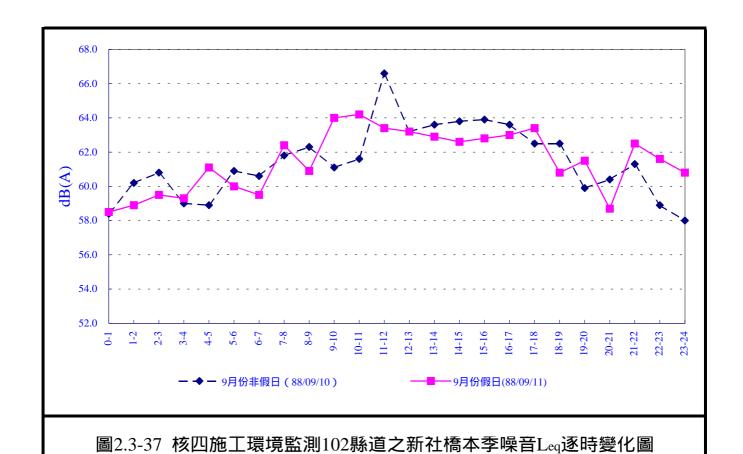
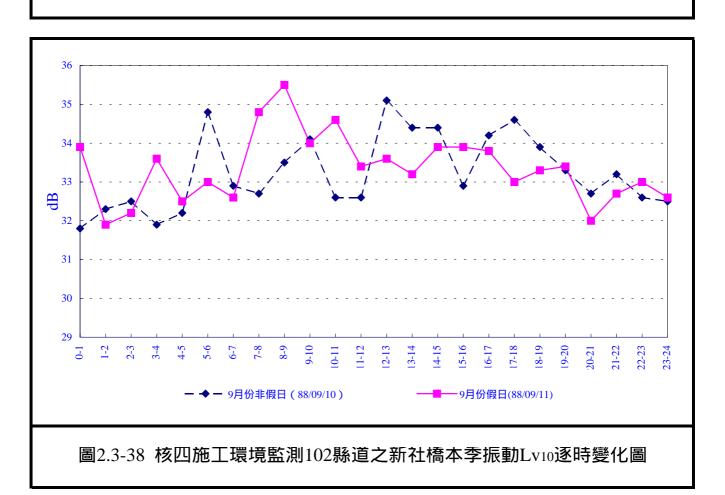
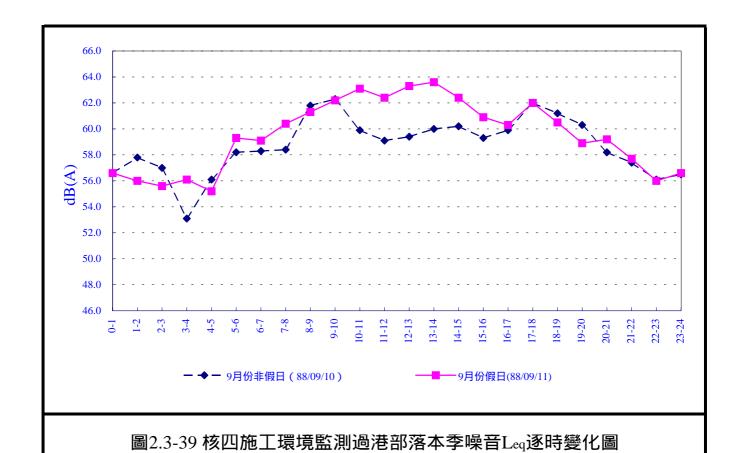
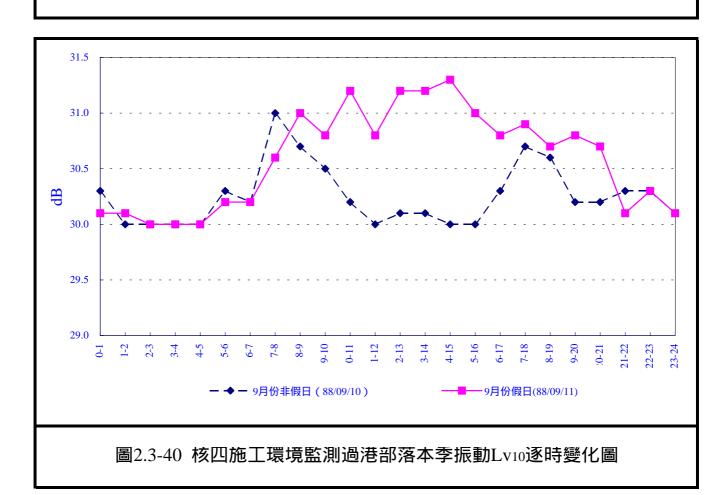
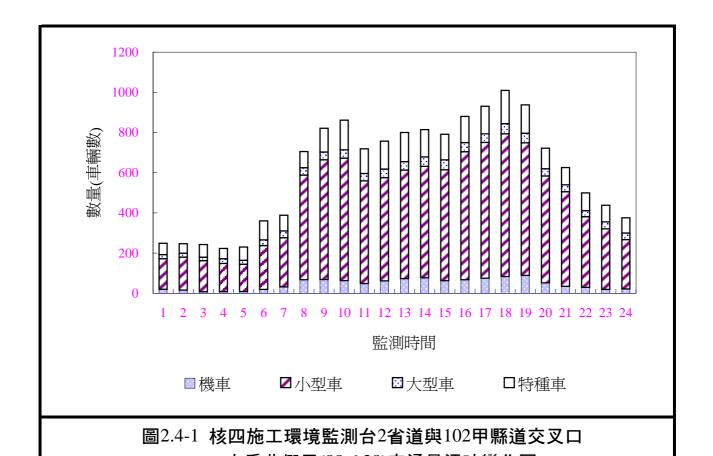
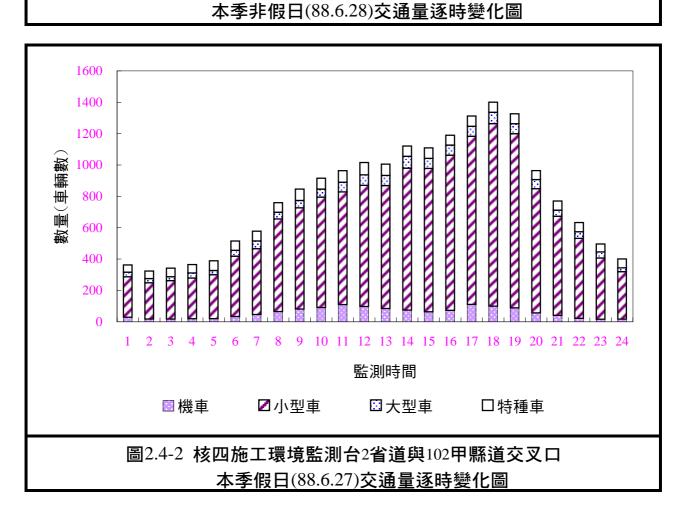


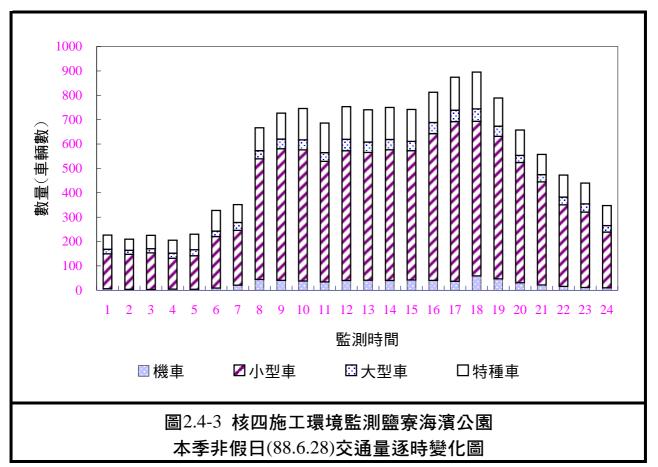
圖2.3-34 核四施工環境監測鹽寮海濱公園本季振動Lv10逐時變化圖

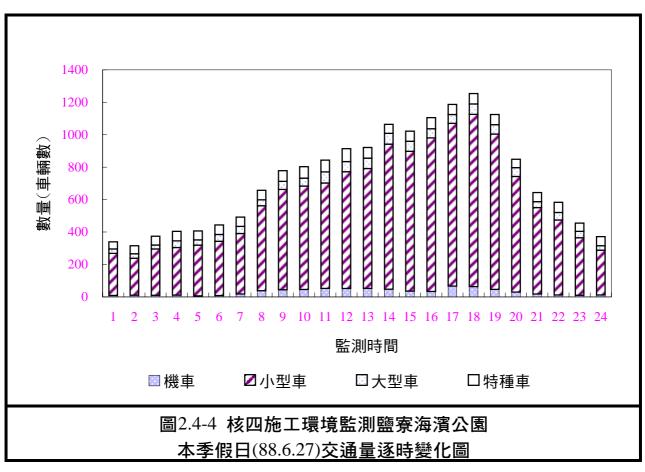






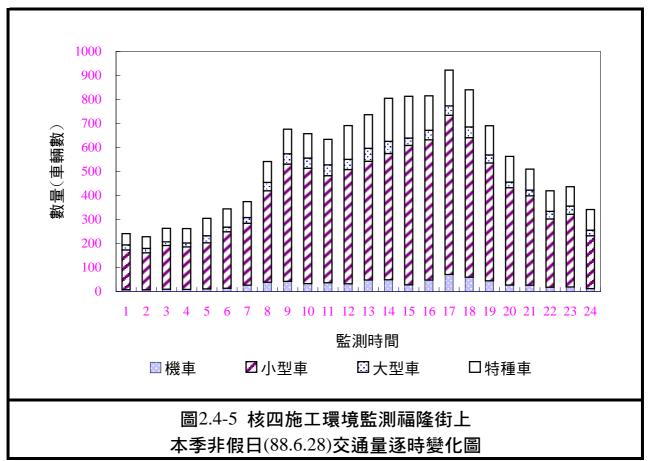

圖2.3-35 核四施工環境監測福隆街上本季噪音Leq逐時變化圖

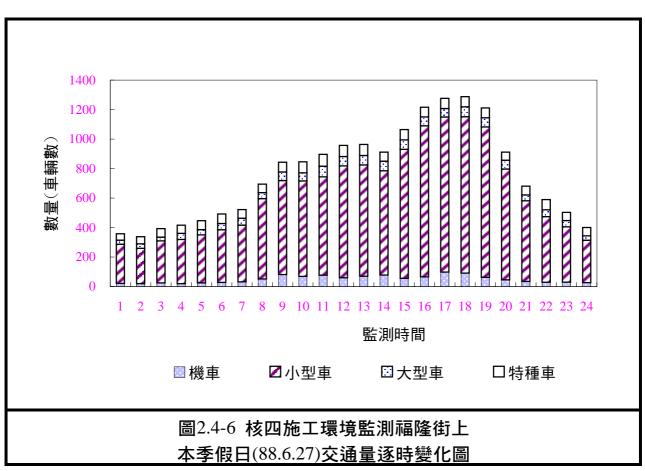


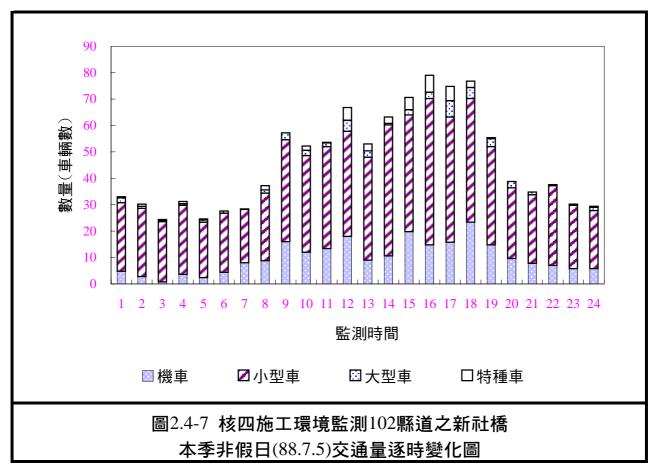


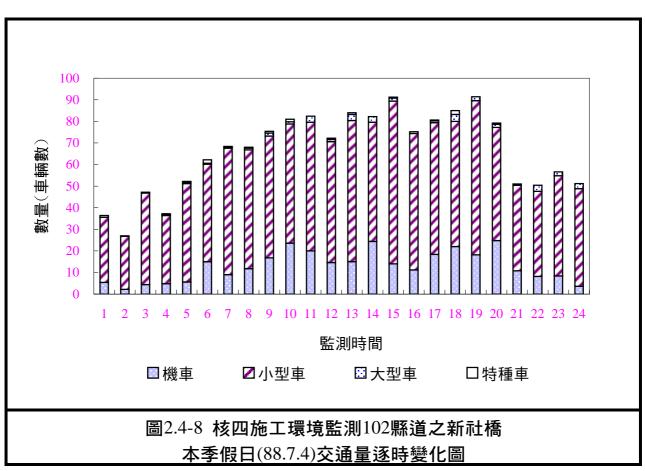


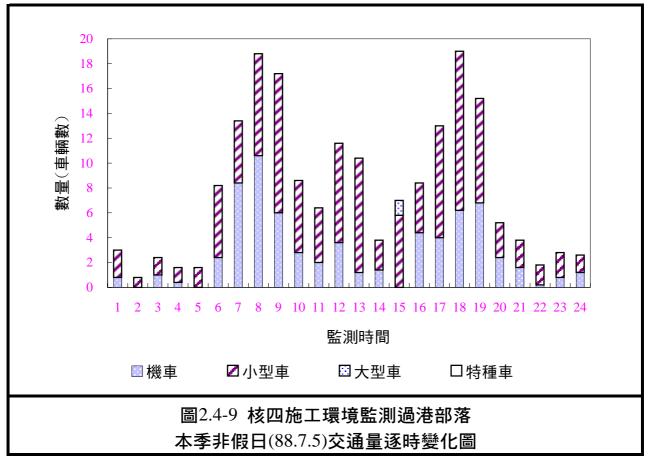


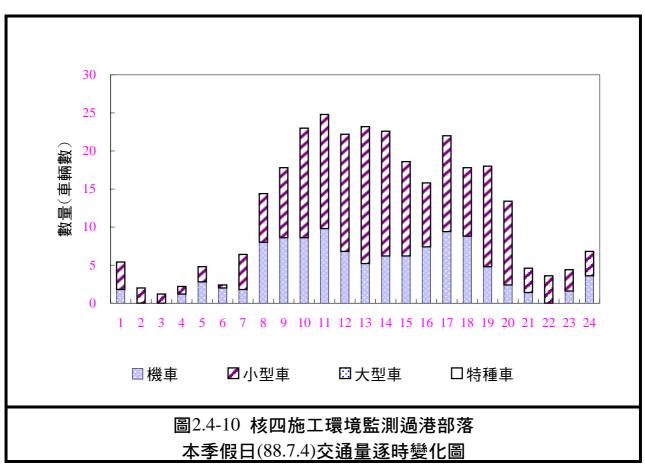


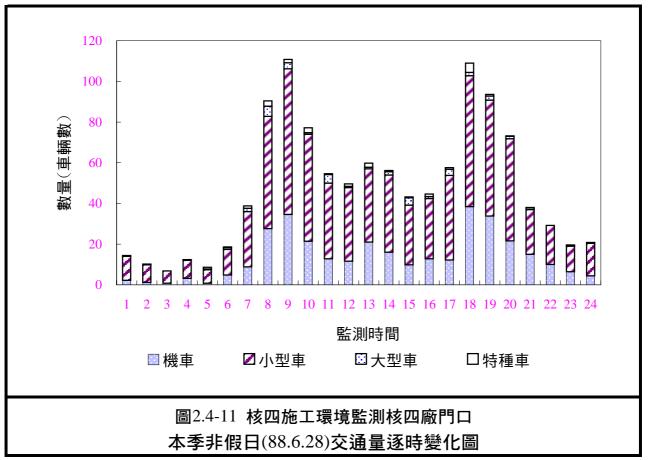


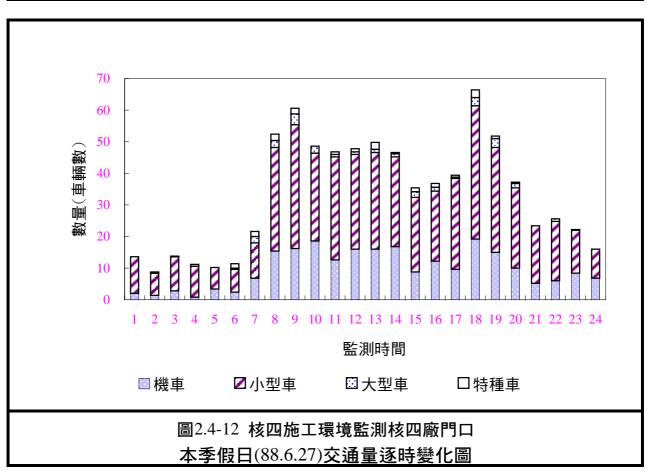


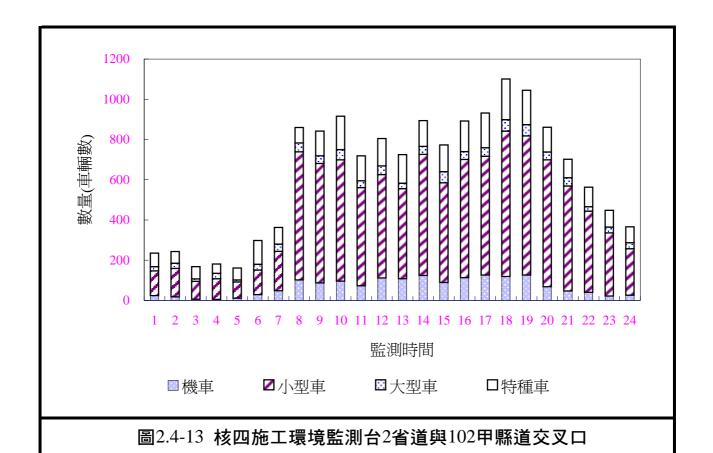


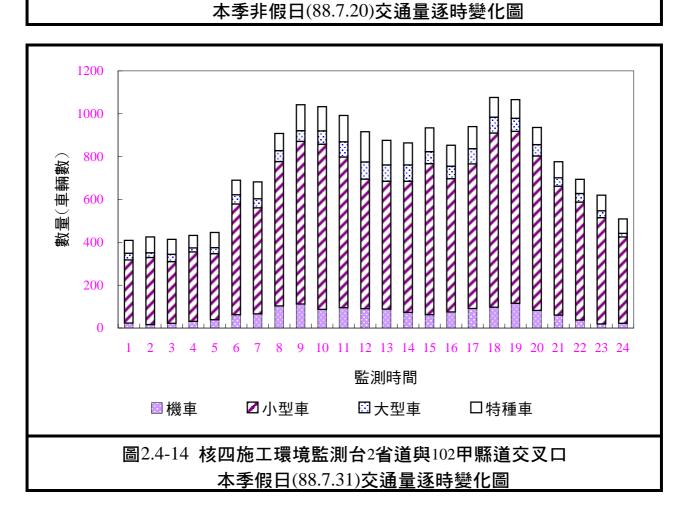


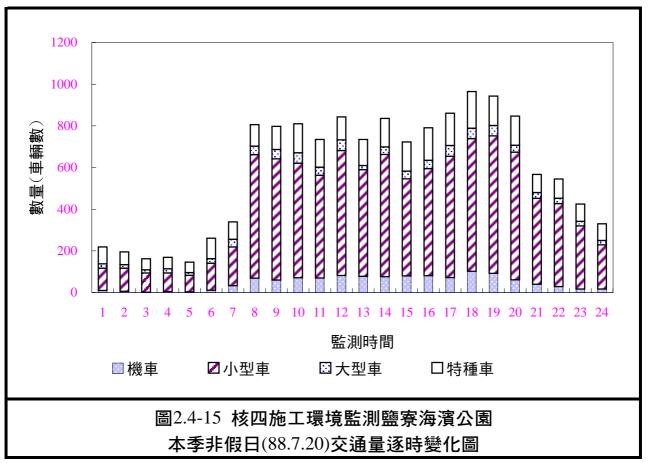


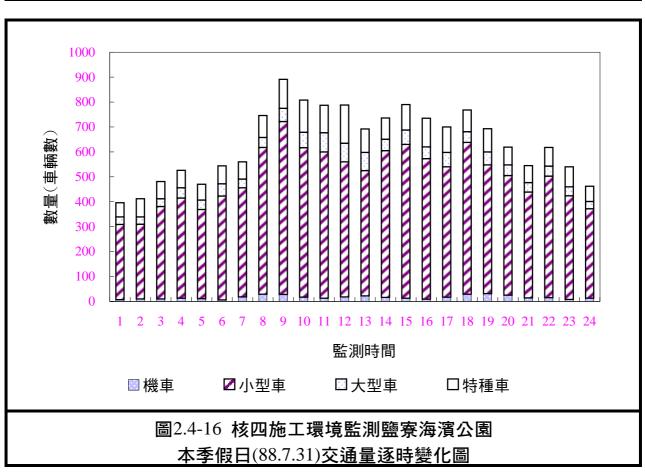


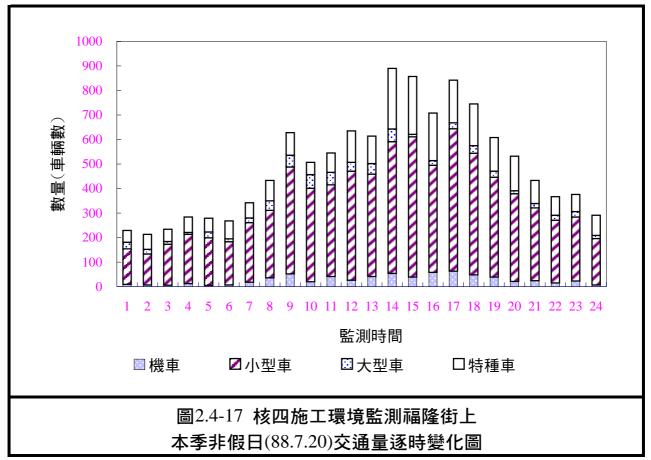


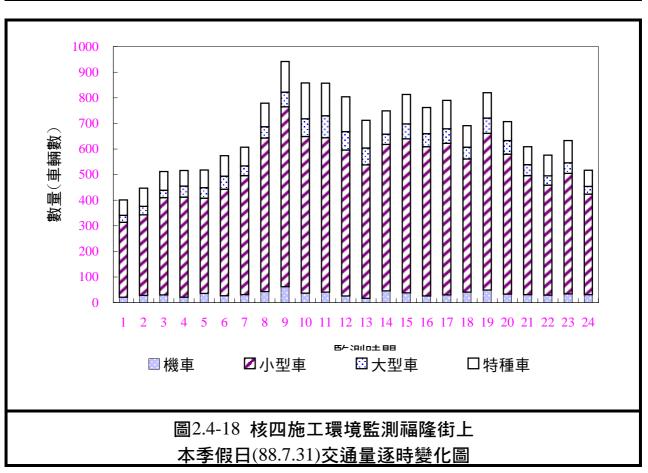


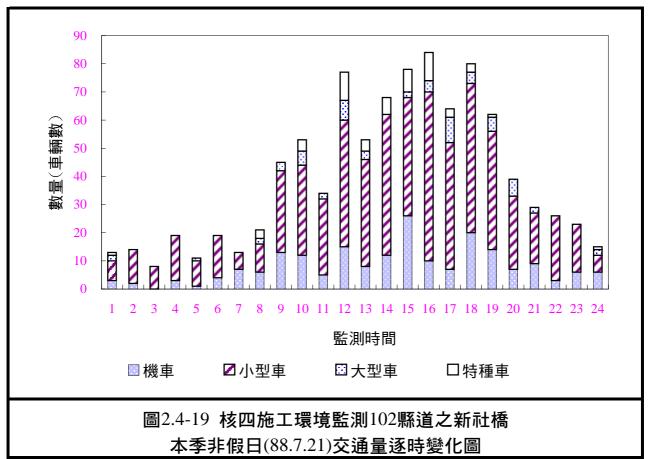


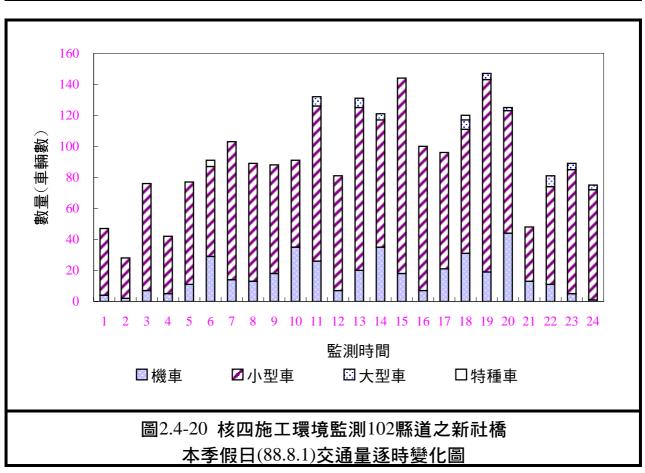


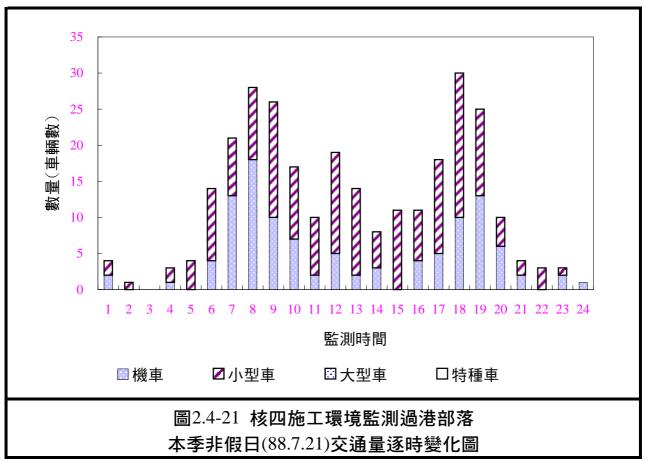


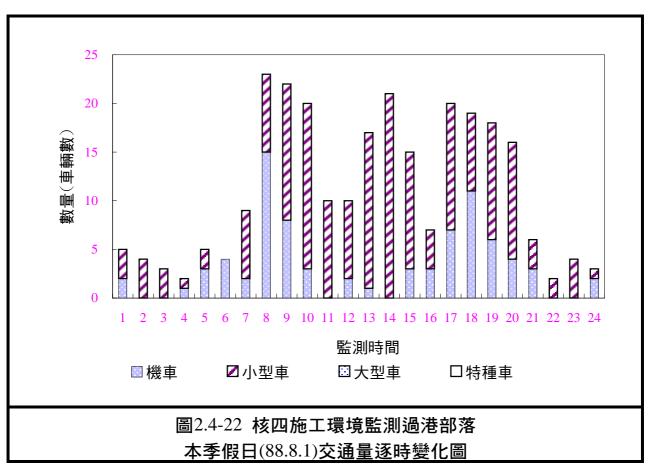


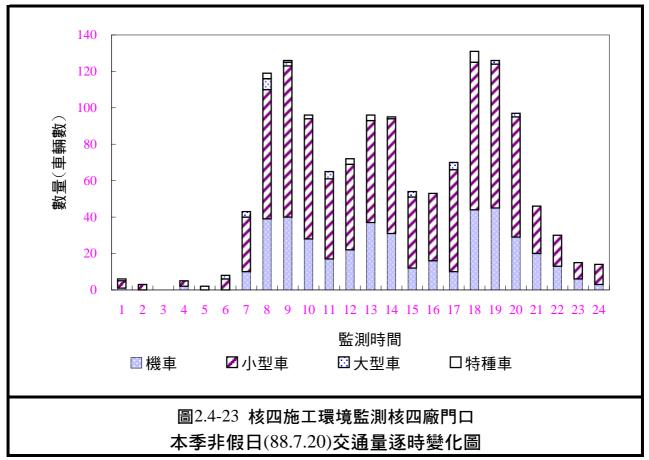


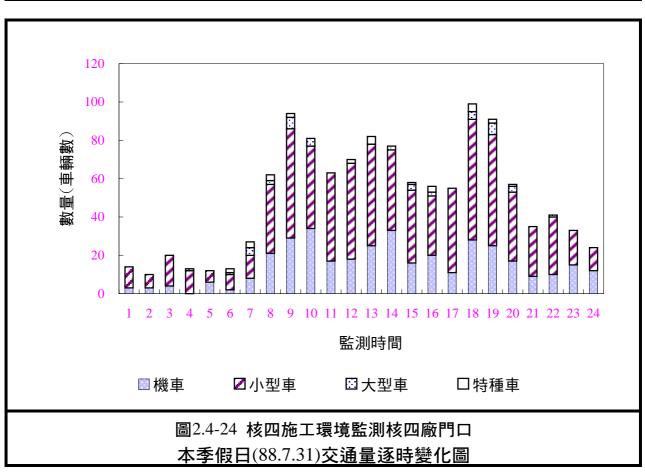


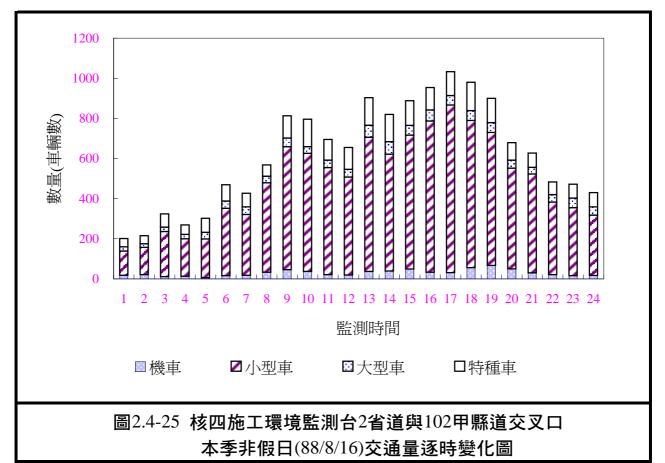


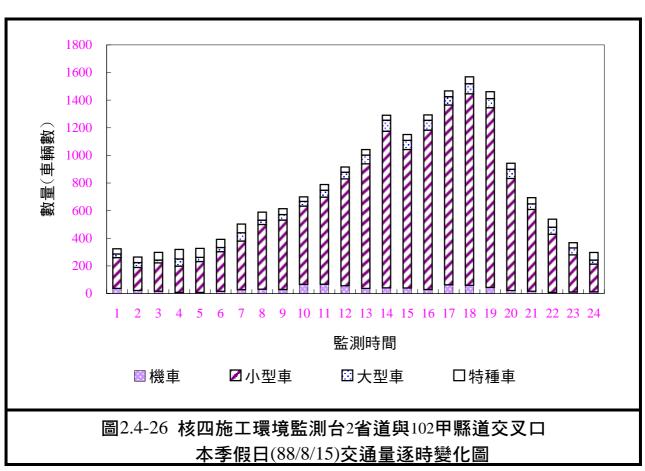


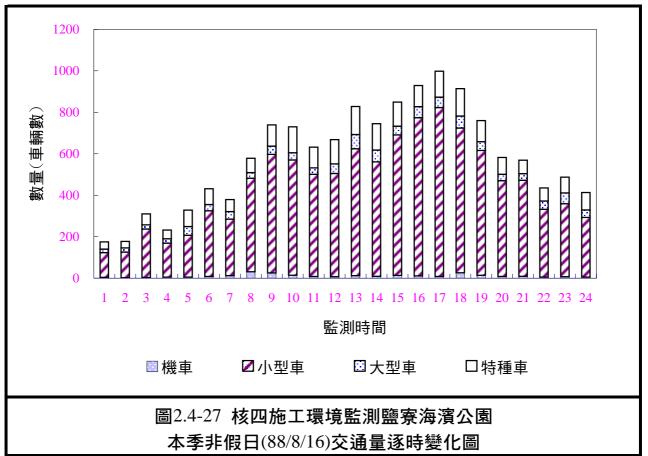


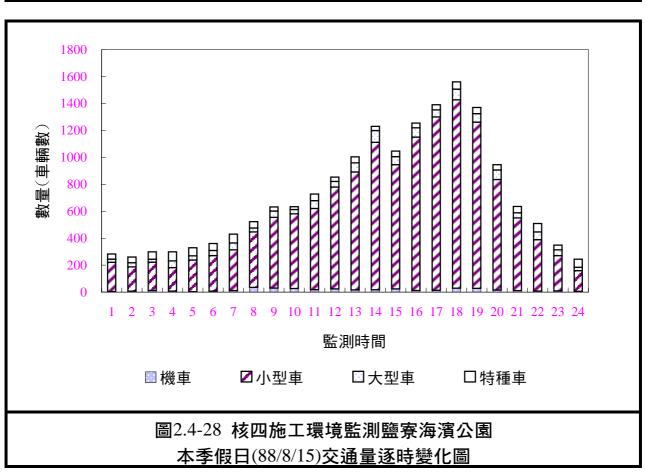


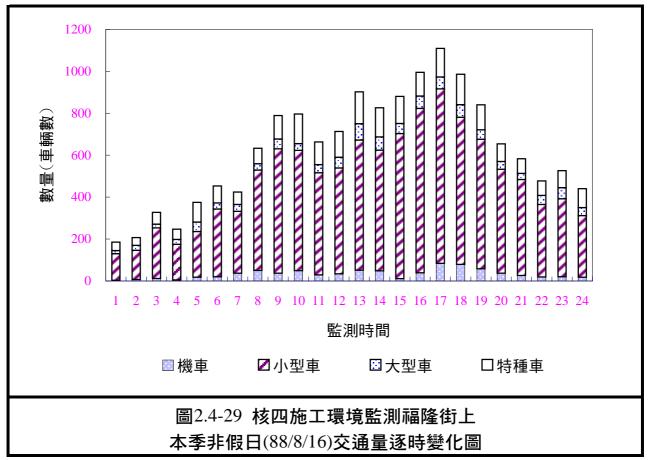


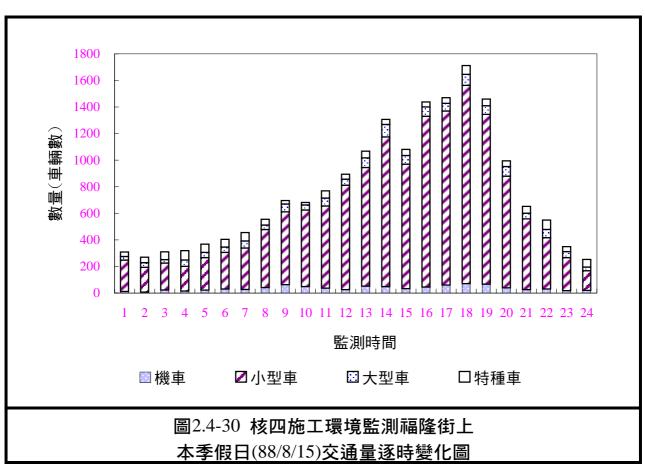


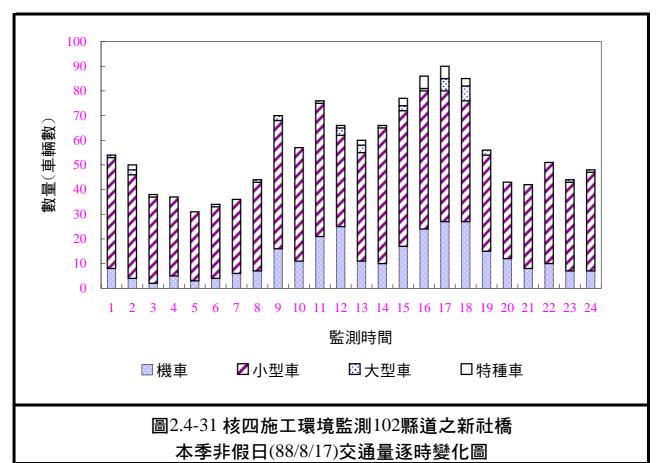


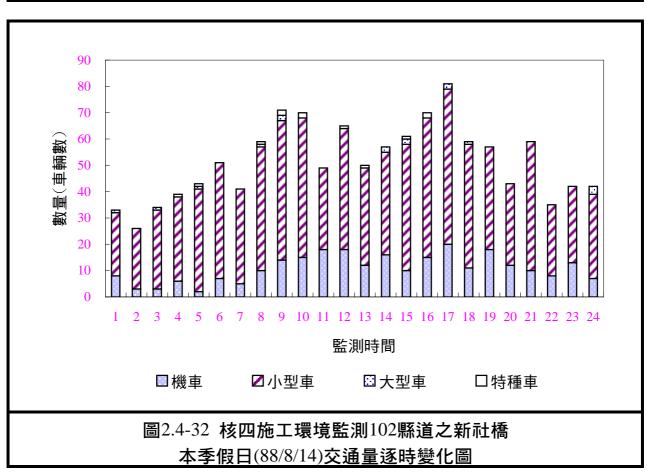


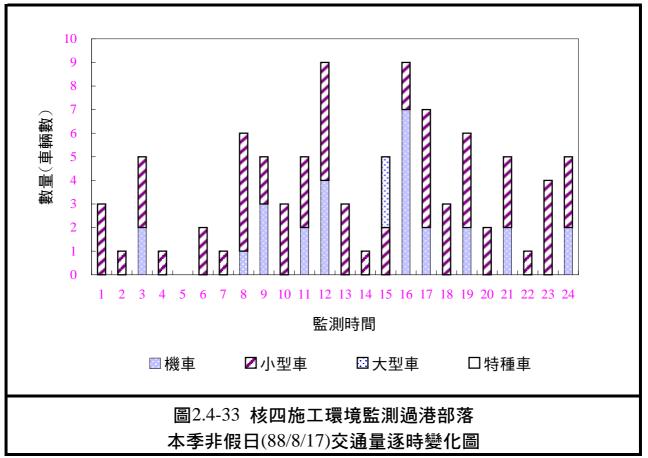


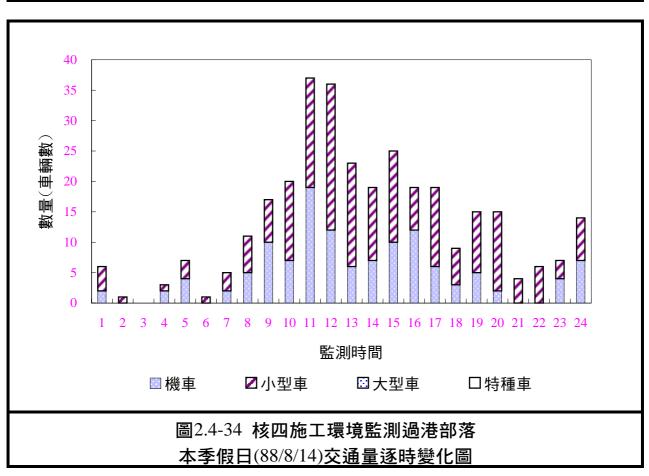


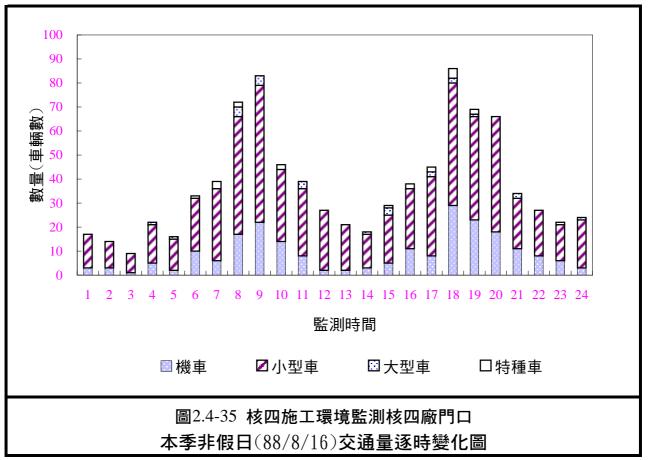


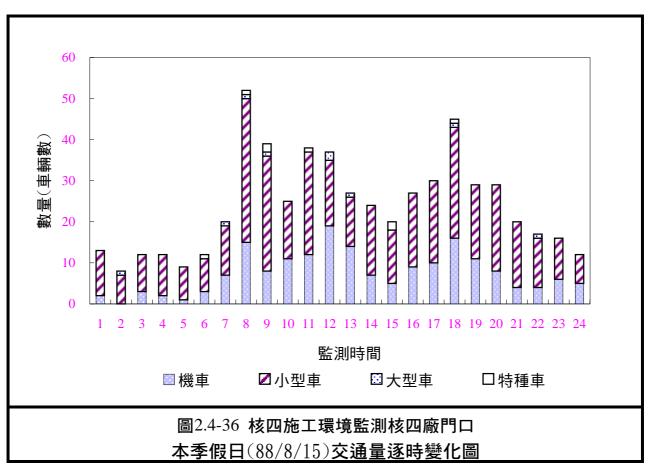


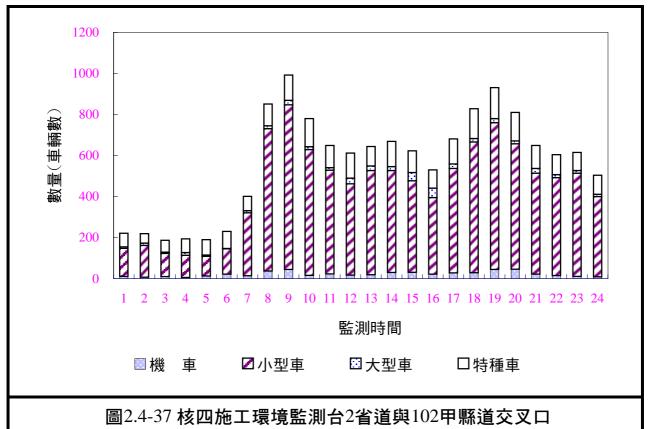
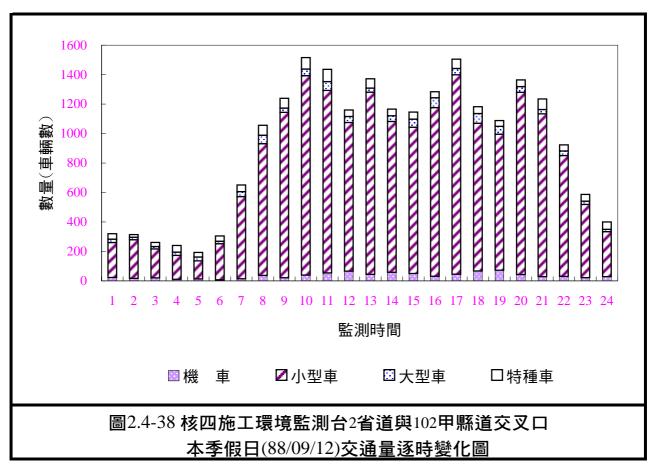
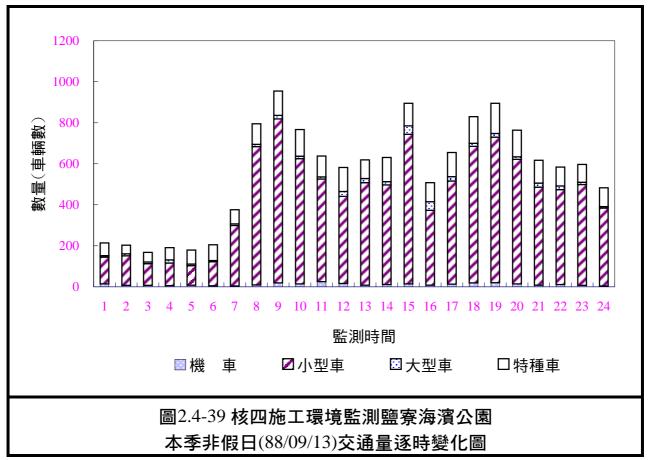
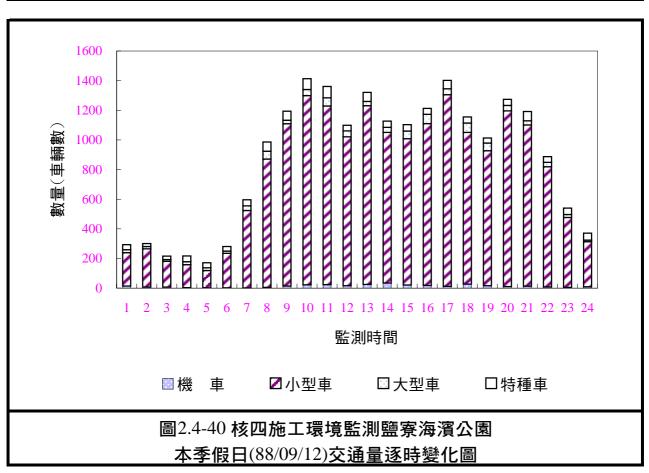
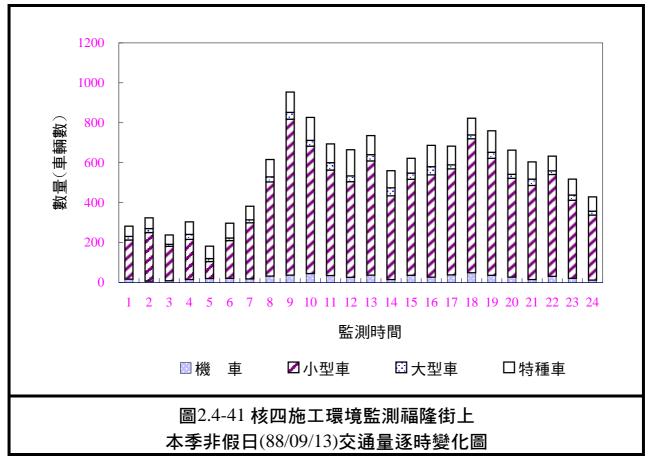


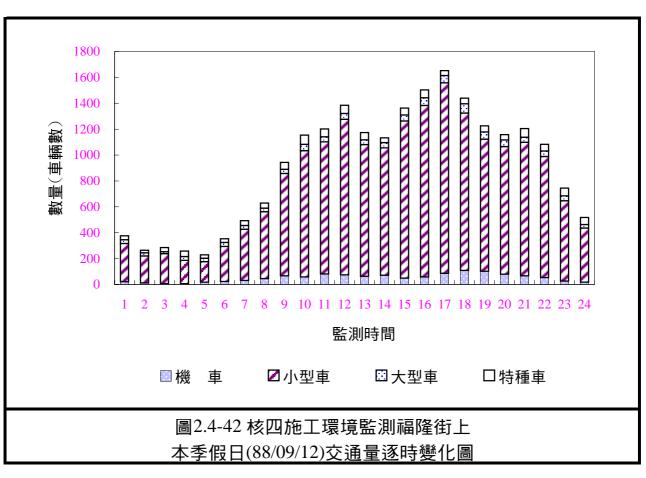


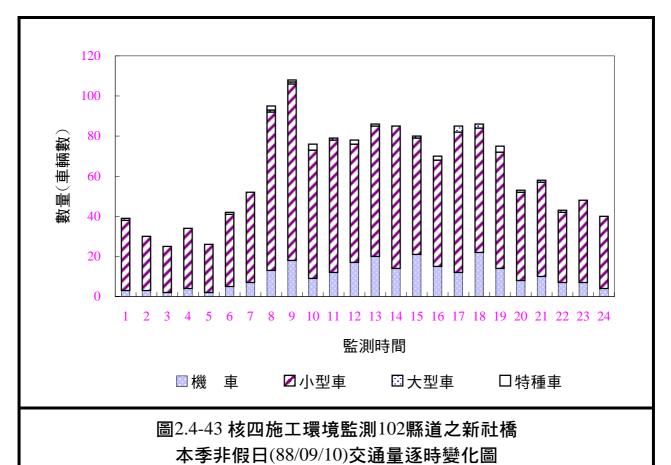


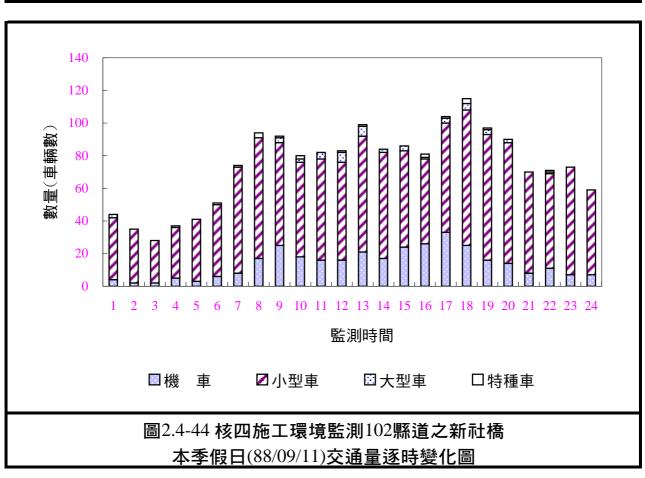




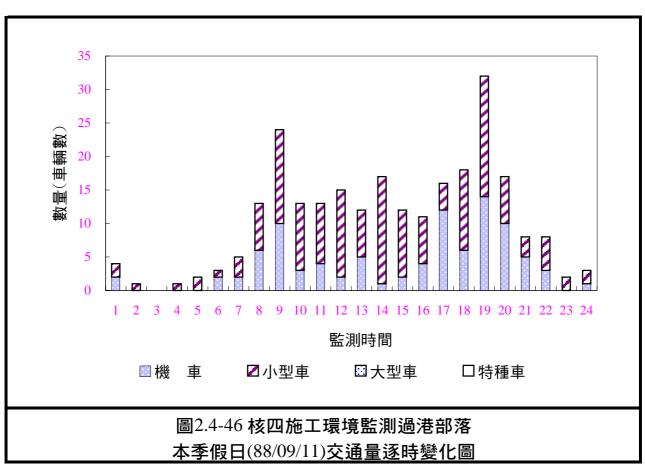






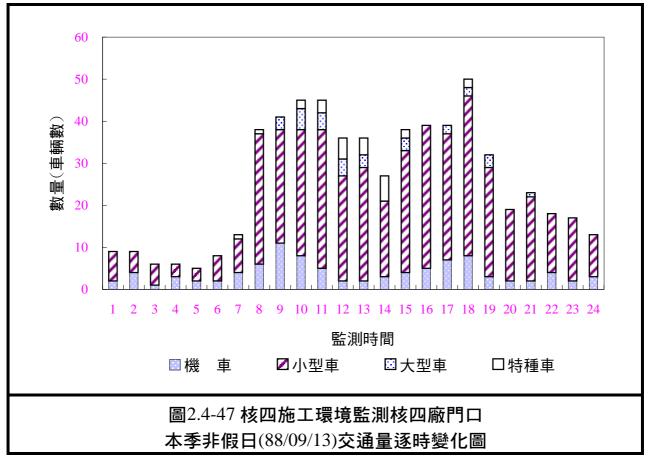

圖2.4-37 核四施工環境監測台2省道與102甲縣道交叉口本季非假日(88/09/13)交通量逐時變化圖

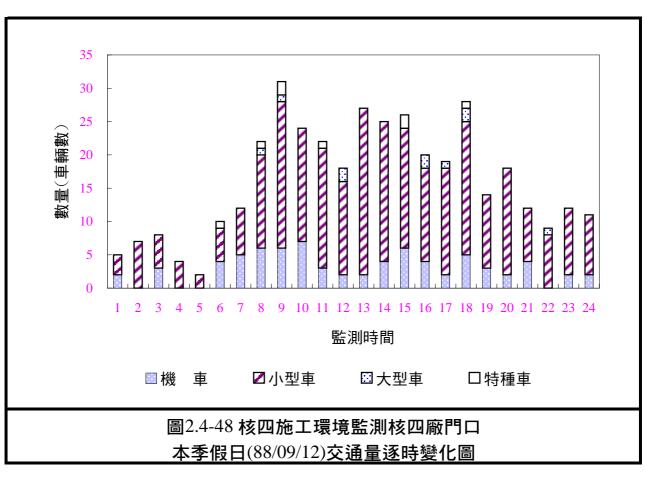


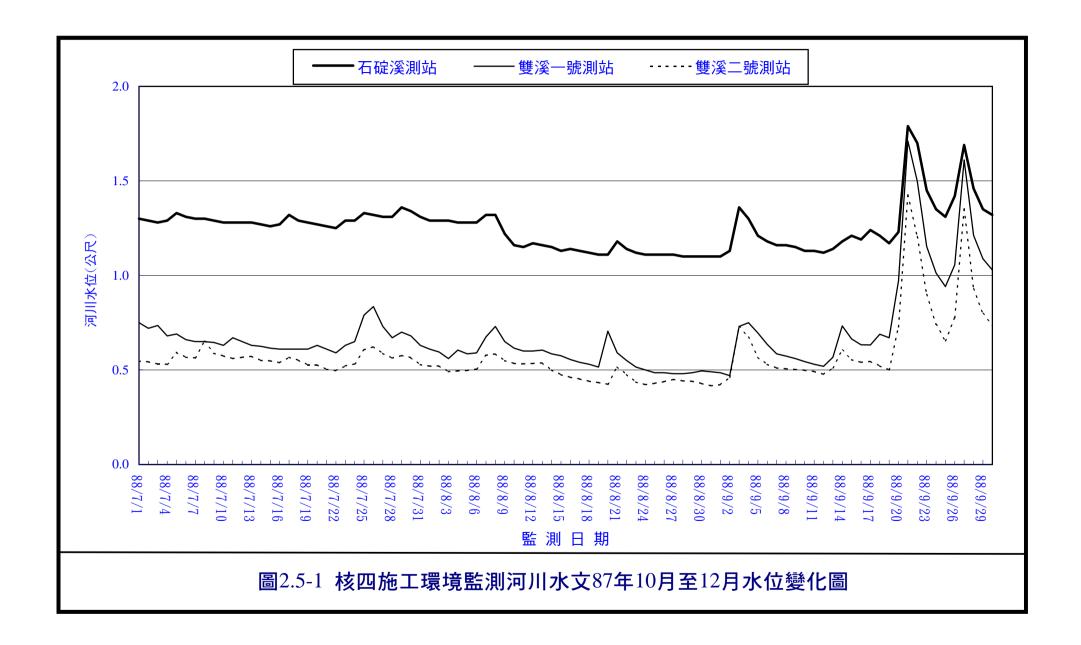


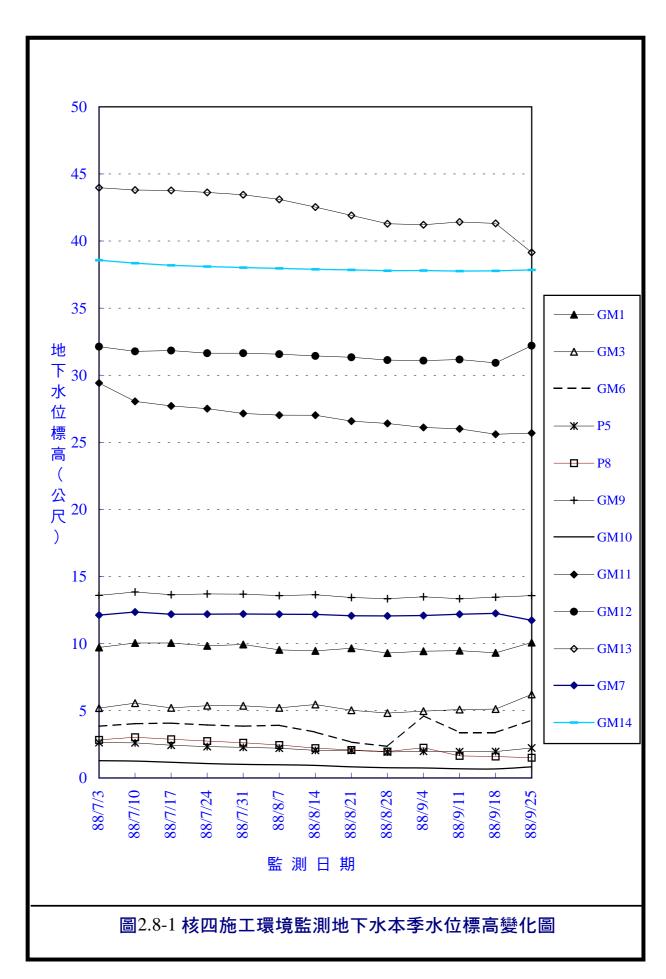












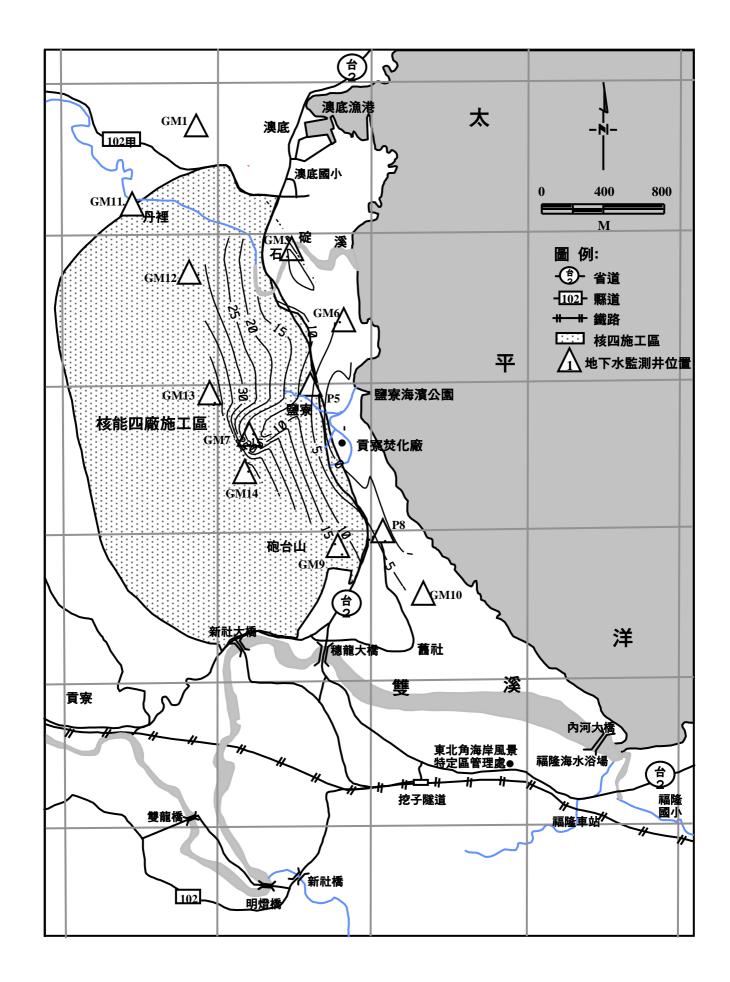


圖 2.8-2 核四施工環境監測地下水88年7月等水位線圖

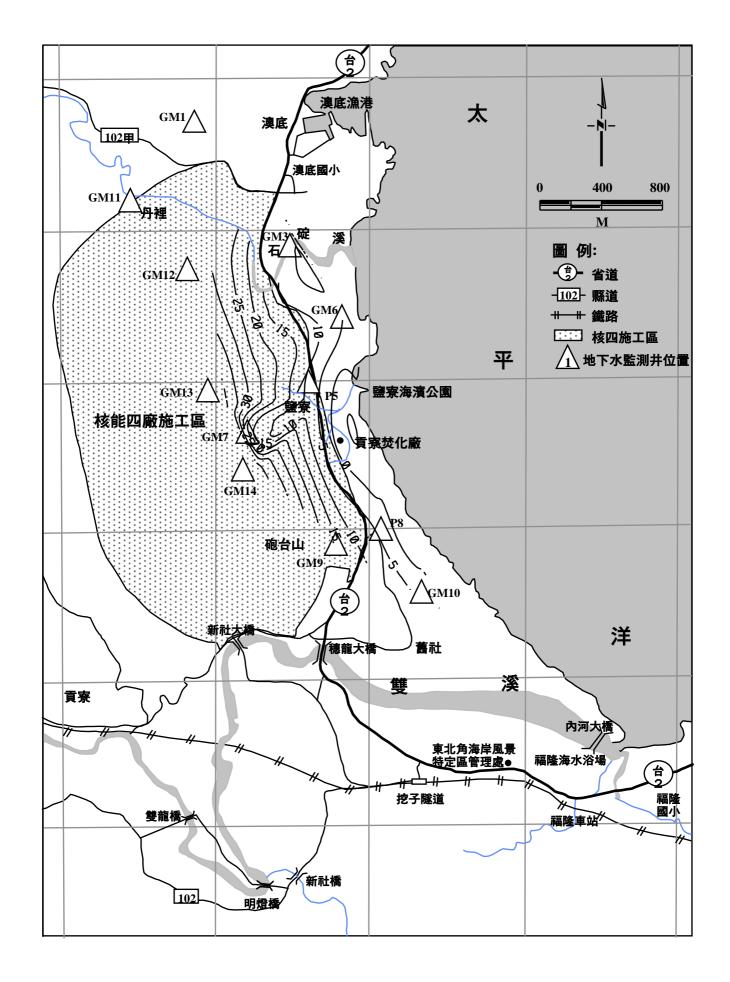


圖 2.8-3 核四施工環境監測地下水88年8月等水位線圖

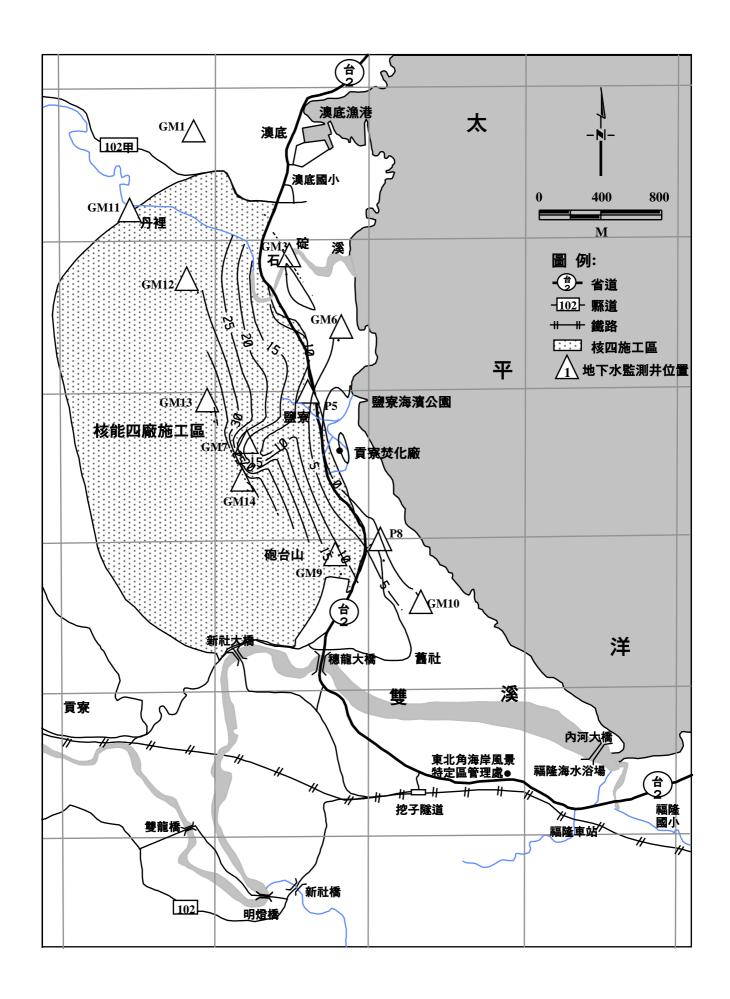
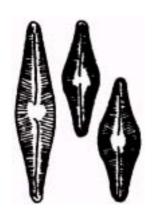
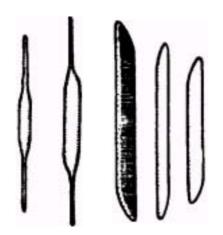
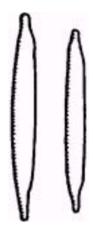
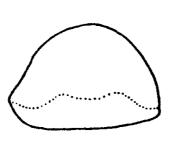




圖 2.8-4 核四施工環境監測地下水88年9月等水位線圖

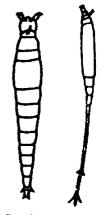

浮游植物:

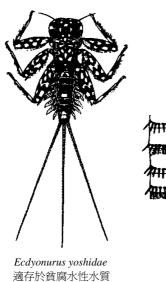
Navicula cryptocephala

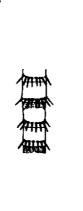
Nitzschia spp. 均適存於 α -中腐水性水質至 β -中腐水性水質

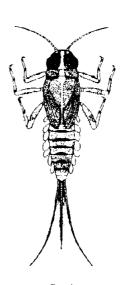


Nitzschia palea

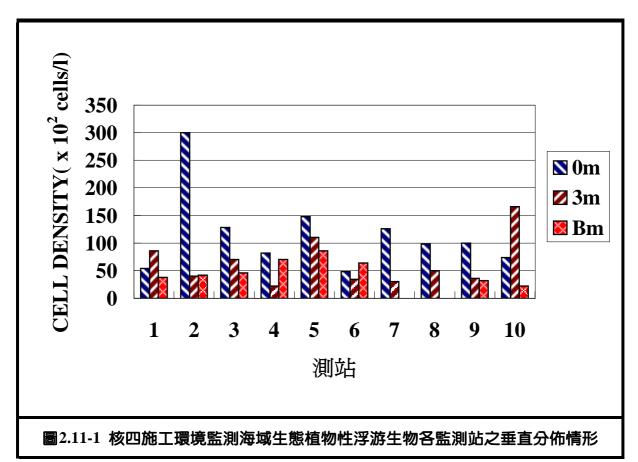

浮游動物:

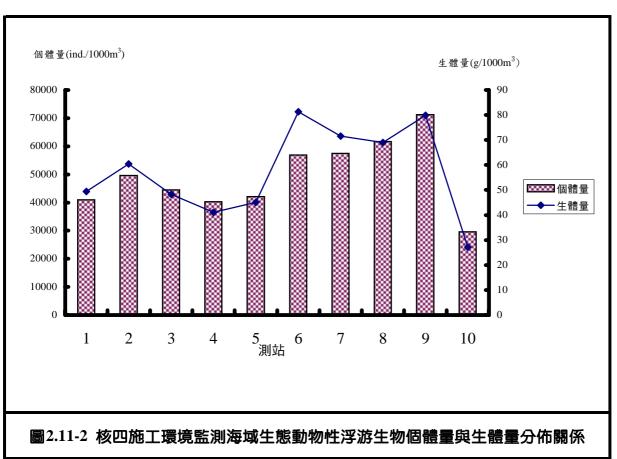

 $Difflugia\ corona$ 適存於eta-中腐水性水質至貧腐水性水質 水生 昆蟲:

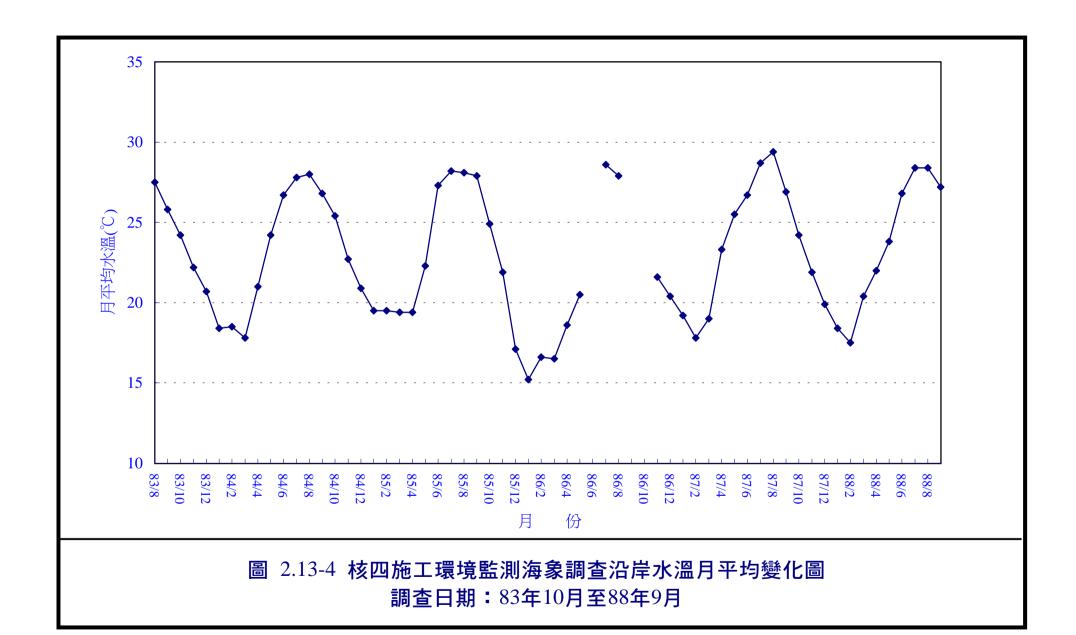



 $Arecella\ vulgaris$ 適存於 β -中腐水性水質

Rotaria sp. 均適存於 α -中腐水性水質至強中腐水性水質






Baetis spp. 均適存於 β-中腐水性水質至貧腐水性水質

資料來源: 台灣河川污染生物指標及水質等級評估之研究-洪正中著。

圖2.9-1 核四廠(88年8月)附近河川所出現之生物指標及其適存水域

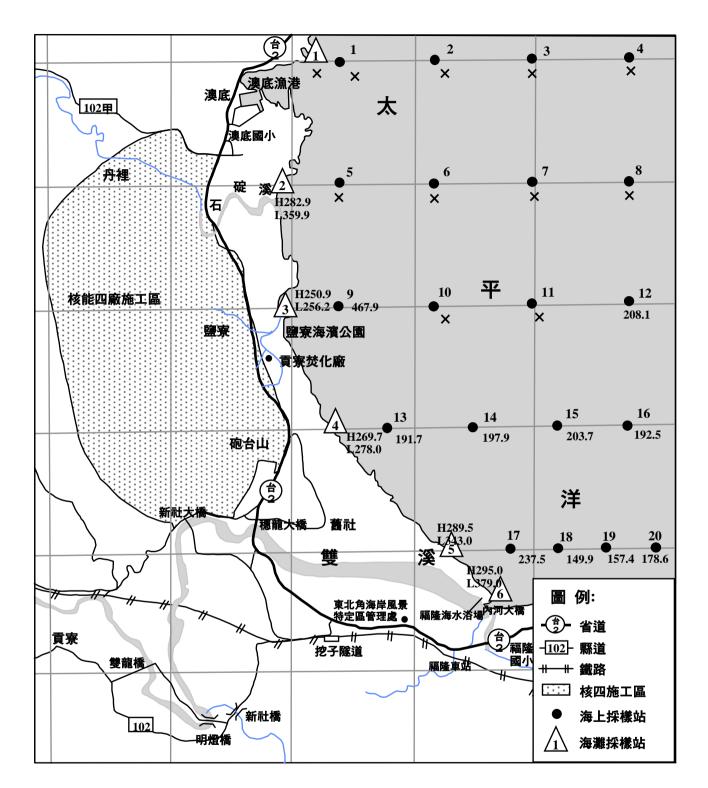


圖2.15-1 核四施工環境監測海域漂砂採樣站累積百分比50%粒徑資料圖 (88年8月)

(註:單位: μ m ∘ ×表無資料者,底床爲岩床。*表因點位放網,無法取樣。 H表海岸高潮線採樣資料。L表海岸低潮線採樣資料。)

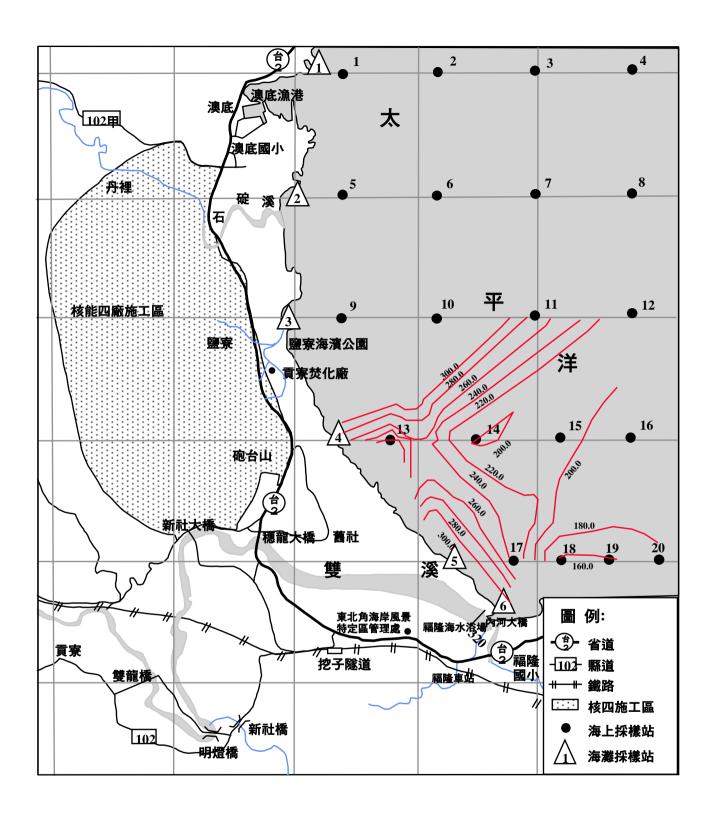


圖 2.15-2 核四施工環境監測海域漂砂採樣站累積百分比50%粒徑資料等值曲線圖 (88年8月)

(註:單位: μ m ∘ ×表無資料者,底床爲岩床。*表因點位放網,無法取樣。 H表海岸高潮線採樣資料。L表海岸低潮線採樣資料。)

拍攝日期:86年9月

拍攝日期:87年7月

拍攝日期:88年9月

照片2.14-1 核四施工環境監測第一觀景點記錄照片

拍攝日期:86年8月

拍攝日期:87年9月

拍攝日期:88年9月

照片2.14-2 核四施工環境監測第二觀景點記錄照片

拍攝日期:86年9月

拍攝日期:87年8月

拍攝日期:88年6月

照片2.14-3 核四施工環境監測第三觀景點記錄照片

拍攝日期:86年7月

拍攝日期:87年9月

拍攝日期:88年9月

照片2.14-4 核四施工環境監測第四觀景點記錄照片

拍攝日期:86年7月

拍攝日期:87年8月

拍攝日期:88年9月

照片2.14-5 核四施工環境監測第五觀景點北向記錄照片

拍攝日期:86年7月

拍攝日期:87年9月

拍攝日期:88年9月

照片2.14-6 核四施工環境監測第五觀景點西向記錄照片

拍攝日期:86年7月

拍攝日期:87年9月

拍攝日期:88年9月

照片2.14-7 核四施工環境監測第五觀景點南向記錄照片

拍攝日期:86年7月

拍攝日期:87年9月

拍攝日期:88年9月

照片2.14-8 核四施工環境監測第六觀景點記錄照片

拍攝日期:86年7月

拍攝日期:87年8月

拍攝日期:88年9月

照片2.14-9 核四施工環境監測第七觀景點記錄照片

第三章 檢討與建議

3.1 監測結果檢討與因應對策

3.1.1 監測結果綜合檢討分析

1.氣象觀測

(1)風向與風速

在本季風向風速與上季的比較方面,本季高、低塔氣象塔所觀測之平均風速較上一季觀測結果略低,由於觀測高程的關係,低塔63公尺氣象塔的觀測結果較爲明顯,而以低塔21公尺的變化最不明顯。至於盛行風向方面,7~8月之高、低氣象塔以西北風風向爲主,9月則以北北西風風向爲主。

在與歷年觀測結果的比較方面,依據台電公司電源勘測隊歷年之調查結果(詳表2.1-1),本季高、低塔7~9月之盛行風向與歷年觀測結果略有不同,歷年7、8月之盛行風向以南風風向爲主;至於平均風速方面,本季高、低塔平均風速略低於歷年同期平均風速。

(2)氣溫、露點溫度與相對濕度

歷年7月至9月觀測之平均氣溫(詳表2.1-2)分別為28.1℃、27.8 ℃及25.9℃,去年(87年)同期之平均氣溫分別為29.4℃、29.1℃及25.9 ℃,本季之平均氣溫分別為27.9℃、27.8℃及26.4℃,與歷年及去年同 期測值相較,本季大致較歷年及去年同期平均測值相差不大。 歷年7月至9月觀測之平均露點溫度(詳表2.1-3)分別爲24.0℃、23.3℃及21.6℃,去年(87年)同期之平均露點溫度分別爲26.0℃、25.9℃及23.0℃,本季之平均露點溫度分別爲23.3℃、23.6℃及23.0℃,與歷次及去年同期測值相較之下,本季測值與歷年同期相近,而較87年同期低約1.5℃。

歷年7月至8月觀測之平均相對濕度(詳表2.1-4)分別爲80.8%、81.3%及83.7%,去年(87年)同期之平均相對濕度分別爲83.1%、85.0%及93.7%,本季各月之平均相對濕度則分別爲76.7%、78.7%及81.8%,本季測值較歷年及87年同期爲低。

③大氣穩定度(以垂直溫差推算)

本季、歷年及去年同期7至9月觀測之大氣穩定度機率分佈(詳表 2.1-6)均以D級及E級爲最多,兩級合計約佔61.58%~70.86%,其次爲F 級及G級。

2.空氣品質監測

為瞭解貢寮地區歷年空氣品質變化狀況,並建立長期空氣品質資料,茲整理本監測工作歷次之監測結果,其資料日期爲84年1月至88年9月,分別列如表3.1-1~表3.1-9及圖3.1-1~3.1-9所示,並分析如後。

(1)總懸浮微粒

各測站歷次之總懸浮微粒最高24小時測值,詳如表3.1-1及圖3.1-1,測值介於 $14\sim368$ μ g/m³之間,歷次監測值除福隆海水浴場測站84年6月26日及85年9月22日,因附近裝修和道路施工造成揚塵達368 μ g/m³ 及304 μ g/m³,另84年3月份貢寮焚化廠入口旁之民宅站屋主整理廢五金84年3月27日測值爲286 μ g/m³,88年5月份之貢寮焚化廠入口旁之民

宅測站,測值達254μg/m³,由現場監測人員表示,因天氣晴朗, 台二省道車流量大,造成揚塵之外,其餘均未超過空氣品質標準總懸 浮微粒24小時值250μg/m³之規定,顯示本區域之空氣品質總懸浮微粒 尚稱良好。各測站之間,以貢寮焚化廠入口旁之民宅測站之平均測值 最高,其次爲福隆海水浴場測站,而以川島養殖池測站之平均測值最 低,各測站歷次平均測值之季節性變化並無漸增加之趨勢。

(2) 氢氧化物

各測站歷次之氮氧化物最高日平均值詳如表3.1-2及圖3.1-2,最高小時值則詳如表3.1-3及圖3.1-3;最高日平均值介於3~163ppb之間,最高小時測值介於5~368ppb之間。各測站間,以貢寮焚化廠入口旁之民宅測站之平均測值最高,其次爲石碇宮測站,龍門社區測站與川島養殖池測站之平均測值相差不大而且均偏低;此外,各測站歷次測值之季節性變化趨勢亦不明顯。

(3)二氧化氮

各測站二氧化氮最高日平均值詳如表3.1-4及圖3.1-4,最高小時平均值則詳如表3.1-5及圖3.1-5;最高日平均值介於2~75ppb之間,最高小時測值約介於4~114ppb之間。歷次小時平測值均低於空氣品質標準二氧化氮最高小時值250ppb之要求,顯示本區域空氣品質二氧化氮之現況非常良好,各測站間以貢寮焚化廠入口旁之民宅測站之平均測值最高,其他六個測站之平均測值相差不大;此外,各測站之測值亦無明顯季節性變化趨勢。

(4)一氧化碳

各測站歷次一氧化碳最高小時值詳如表3.1-6及圖3.1-6,其測值介於0.3~8.5ppm之間,最高值8.5ppm係發生於石碇宮測站85年8月之測

值(其原因爲石碇宮旁有人焚燒紙錢不慎所致),惟歷次測值均未超過空氣品質一氧化碳最高小時值35ppm之限值要求,各測站歷年來之平均測值介於1.0~1.3ppm,此外各測站歷次測值並無特別明顯季節性之變化。

各測站歷次一氧化碳最高八小時值詳如表3.1-7及圖3.1-7,其測值介於0.2~3.8ppm之間,歷次平均測值均未超過空氣品質標準一氧化碳最高八小時值9ppm之規定。各測站間之平均測值非常相近且與歷次平均值差異不大,亦無季節性變化。

⑤非甲烷碳氫化合物

各測站之非甲烷碳氫化合物最高日平均值詳如表3.1-8及圖3.1-8所示,最高小時平均值詳如表3.1-9及圖3.1-9;最高日平均測值介於0.02~2.30ppm之間,最高小時平均測值介於0.04~4.40ppm之間,其中最高日平均值以澳底國小測值較高外,其餘各站歷次監測平均值均不高且相近,而最高小時值以福隆海水浴場測值較高,其次爲澳底國小測站,其他各站之最高小時值均相近。

依據上述本監測工作歷次監測結果顯示,七處測站之總懸浮微粒、 氮氧化物、二氧化氮、一氧化碳及非甲烷碳氫化合物之濃度測值,除 84年6月及85年9月之福隆海水浴場之總懸浮微粒24小時測值368 μ g/m³和304μg/m³超出法規限值,另84年3月及88年5月份貢寮焚化廠入 口旁之民宅測站測值為286μg/m³和254μg/m³超出法規限值,並且於 85年4、5、7月貢寮焚化廠入口旁之民宅測站之氮氧化物最高小時值達 368ppb、281ppb、265ppb,超出法規二氧化氮小時值平均限值外,其 餘所有測值均符合法規標準,各測站氣狀污染物歷次測站變化幅度並 不大且測值低,代表本地區長期之空氣品質尚屬良好,對廠區周界範 圍及鄰近敏感點之空氣品質影響誠屬有限。

3. 噪音與振動監測

自84年7月起台2省道與102縣道交叉口、貢寮國小及龍門社區活動中心三個既有測站依原子能委員會核能四廠環境保護監督委員會之建議,已分別更改爲福隆街上、102縣道之新社橋及過港部落,以下就各測站歷年之監測結果做分析。

(1)噪音部份

有關本季7~9月份監測工作噪音L平、LH、L®及L®監測結果整理於表3.1-10,並繪如圖3.1-10至圖3.1-17所示。以省道旁三個測站做比較,本季以台2省道與102縣道交叉口之噪音値較高,測値介於68.4~74.6dB(A),由於此三測站其噪音主要來自往來省道之車輛及假日前來遊玩之遊客嬉戲聲,故歷次測値大多超過環境音量標準限値。另外,台2省道與102甲縣道交叉口之L®、L®之噪音亦來自夜晚至餐廳用餐人聲吵雜所致。

非省道旁之102縣道之新社橋及過港部落兩測站因車流量明顯減少許多,故其噪音量較低,然由於過港部落測站位於一般地區第二類噪音管制區內,其噪音管制標準較省道旁測站嚴格,且過港部落位處海邊,風及海浪聲較大,故其噪音值超出標準之比例亦頗高。整體而言,本季監測結果噪音值多超出標準值。

②振動部份

本季監測工作振動之 L_{10} (24小時)監測結果,整理於表3.1-11,並繪如圖3.1-18及圖3.1-19所示。各測站監測結果以福隆街振動測值較高,其歷次 $Lv_{10(24^{4})}$ 平均測值約在30.4~47.1dB之間。

4.交通流量監測

本 季 交 通 流 量 與 歷 次 監 測 調 查 結 果 整 理 於 表 3.1-12 , 並 繪 如 圖 3.1-20、3.1-21所示,綜合其成果,大體而言可發現假日之小客車當量數 (P.C.U./日)大 致 高 於 非 假 日 , 此 乃 歷 次 監 測 結 果 多 呈 一 致 之 情 形 。 以 台2省道與102甲縣道交叉口、鹽寮海濱公園兩測站歷年之資料分析,台2 省 道 與 102 甲 縣 道 交 叉 口 交 通 流 量 歷 次 平 均 値 較 鹽 寮 海 濱 公 園 爲 高 ,而 兩 測站假日之交通量,整體而言均高於非假日,此因兩測站均屬於東北角 海岸國家風景區之要道上,每當假日都有大批民眾駕駛小客車前來休閒 渡假,造成車流量增加之故。歷年台2省道與102甲縣道交叉口非假日之 歷年交通流量除85年12月、86年4、11月及87年8月份及本季88年6、8、9 月份監測值較低外,其餘均介於15,000~30,000P.C.U./日,以民國85年4 月份監測日恰於連續假日之前一天,可能因有不少民眾提前休假而造成 車流量劇增,致車輛達29,555 P.C.U./日,為歷次監測資料最高;鹽寮 海濱公園非假日之交通流量除85年12月及86年2月、4月、11月及87年8 月、9月及88年6、7、8、9月測値較低外,其餘約介於15,000~25,200P.C.U. /日,至於二測站之假日交通量變化較爲顯著,其與天氣好壞及假日長 短有密切之關聯,其中以83年4月因適逢連續假日旅遊人數大增及85年8 月因氣候適宜,吸引大批遊客,導致台2省道之交通流量劇增至 32,000~35,100P.C.U. / 日左右。本季位於台2省道上之三測站於假日及非 假日之交通流量較去年同期爲低,至於102縣道之新社橋與過港部落兩測 站因較爲偏僻,其車流量少,但由於假日時有部份遊客驅車前往草嶺古 道 或 至 海 邊 戲 水 會 行 經 102縣 道 或 過 港 部 落 , 故 使 其 兩 處 假 日 之 車 流 量 歷 次監測結果大致高於非假日,若與去年同季相比,兩站之測値亦差異不 大。

5.河川水文監測

有關石碇溪與雙溪本季與歷年同期之河川水文監測結果,請參閱2.5 節表2.5-1~2.5-3所示。在河川水位方面,石碇溪測站本季之平均水位與 環評階段之測定結果比較,7月本季結果較高,8月則較低,而9月結果與 環評結果略同;雙溪一號各月測值則均偏低。若以本季之平均水位與去 年(87年)同期之河川水位月平均值比較,石碇溪及雙溪一號測值均為7 月較高,8、9月偏低之情形;而雙溪二號測站測值較去年7、8月高,然9 月則偏低。另就本季所測河川流量與歷年同期的流量比較,本季各測站 監測值大致介於歷年同期測值之範圍內。。

6.河川水質監測

針對河川水質與工程施工較有關之懸浮固體物、導電度及較常超出 甲類水質標準之溶氧量、生化需氧量、氨氮及硝酸鹽氮等水質項目,比 較其歷次測值變化趨勢如圖3.1-22~圖3.1-27所示。歷次監測結果顯示, 於溶氧量方面各次測值呈波動變化,本季僅石碇溪廠界與新社大橋兩測 站之測值達甲類陸域水質標準6.5mg/L以上;生化需氧量及氨氮監測結 果,歷次均以澳底二號橋測值較高且變化較大,本季澳底二號橋測站之 氨氮測值介於0.33~2.59mg/L之間,均未達乙類陸域水體水質標準;懸浮 固體物及導電度歷次監測結果除數次測值偏高(如圖3.1-24及3.1-26所 示)外,大致上變化不大,本季懸浮固體僅貢寮國小7月之測值未符合甲 類水體水質標準;而硝酸鹽氮方面,與歷次監測結果相較之下並無明顯 變化。

7.廠區放流水監測

由歷次監測結果顯示(85年10月~88年9月),各測站測值多以懸浮 固體測值超過放流水水質標準30mg/L限值(放流水流量大於250m³/day) 之情形爲主,其餘各項目測值均符合87年之放流水水質標準。整體而言, 廠區放流水對周遭環境之影響並不大。

而就施工人員污染排放總量對河川水質影響之推估方面,由於雙溪未流經核四施工區,故其水質乃自然背景現況之反應,與核四施工無關,因此乃針對石碇溪水質影響進行推估。目前施工區內之員工污水皆經過化糞池處理達放流水標準後再予排放,由歷次監測結果統計,歷次BOD5

之排放污染量介於 $1.15 \sim 3.49 kg/day$; 石碇溪歷次背景流量介於 $0.119 \sim 2.953 CMS$,而 BOD_5 濃度介於 $1.3 \sim 5.2 mg/L$ (歷次澳底二號橋實測之季平均值),故推算本施工區排放之污水量約佔石碇溪流量 $0.03 \sim 1.23\%$ 左右,且 BOD_5 污染量僅佔石碇溪背景污染量之 $0.02 \sim 8.48\%$ 左右,其對石碇溪水質之影響極爲有限。由於河川沿線兩側有養豬場、養殖池分佈,且澳底地區之餐廳及家庭生活污水大多排放至石碇溪,故推測石碇溪水質主要是受此類污染源所影響。

8.地下水監測

(1)地下水水位

為瞭解本季12口地下水監測井之水位與歷年同期水位之變化情況,茲摘錄核四環評報告及施工期間八十三至八十七年監測年報中7月至9月之平均水位及本季之平均水位列於表3.1-13,經比較分析得知,除GM13監測井較環評報告及83年同期之平均水位爲高以外,其餘監測井之平均水位與環評報告、83~84、86~87年同期之平均水位相近。大體而言,水位之高低變化與降雨補助地下水位有關。

(2)地下水水質

由表 3.1-14至表 3.1-23核四環評報告及本監測工作歷次較重要之九項水質監測資料,可知其中GM1監測井之導電度、氯鹽、生化需氧量、氨氮、總硬度及總有機碳等水質項目之測值,與其他監測井之測值相較,皆有較高之現象;GM10監測井之氯鹽、導電度、化學需氧量及總硬度測值亦較高;各監測井之鐵測值,雖歷次監測互有變化,其測值皆在11mg/L以內,本季測值則介於ND~0.92mg/L之間,以GM14監測井7月之測值 0.92mg/L最高。

③海水入侵研究

由歷次導電度及氯鹽之測值變化可知,僅GM10監測井之測值曾高達前述 $1,400\mu mho/cm$ 及330mg/L之水質鹽化限值,GM10監測井之最高值則分別爲 $2010\mu mho/cm$ (88年5月)及563mg/L(88年4月),詳圖3.1-28及圖3.1-29所示。

GM1監測井自83年4月以後,其導電度及氯鹽測值均已降至鹽化限值1400μmho/cm及330mg/L以下(84年9月除外,該月導電度測值為3,250μmho/cm,氯鹽為494mg/L),惟85年7~9月監測結果又出現導電度2270~2590μmho/cm之高值,至85年10月後又降低至1,400μmho/cm之限值以下,而86年8月又突然升高至4480μmho/cm,後又降至限值以下,至87年8月又升高至6740μmho/cm,而本季88年9月又升高至3500μmho/cm,顯示此監測井水質有斷斷續續遭污染情形發生;而GM10之導電度與氯鹽測值則均在鹽化限值附近變動,於84年7月起始有下降情形,而85年12月起又陸陸續續出現超出鹽化限值之濃度值,本季則均超出鹽化限值。就GM1監測井而言,其歷次水質監測結果變化幅度頗大,且大部份之測值均較其他測站為高,尤其以有機污染指標之生化需氧量、化學需氧量、總有機碳及氨氮等項目測值較高,測值之變化趨勢亦呈一致,因此推測GM1監測井之地下水可能受鄰近養豬戸及家庭生活污水所污染,而GM10監測井因其位置位於海邊,且地下水水位甚低,有可能受海水入侵影響。

此外針對廠址內鄰近1、2號機工程預定地之P5及GM7兩監測井之 導電度進行分析發現,該兩監測井本季測值約介於773~833 μmho/cm 之間,均在水質鹽化限值(1,400μmho/cm)以內,惟其測值普遍較其 他監測井(GM1及GM10監測井除外)爲高,日後核四主體工程施工時 應密切注意其水質變化情形。

9.河域生態監測

歷次河域生態監測結果,除部份項目受季節影響而致測値有所變化外,其餘項目之變化趨勢並不規則,茲就各項監測項目歷次之變化情形 說明如下。

(1)葉綠素甲

石碇溪與雙溪各測站歷次葉綠素甲含量調查結果如圖3.1-30所示,各測站之葉綠素甲含量變化起伏極大,並無一致性變化趨勢,惟自85年2月起則較爲穩定,除少數測站測值較高外,大多介於0.24 µ g/L~2 µ g/L之間。此外,本季之葉綠素甲含量均較上季爲高,亦比去年同期爲高。

②附著性藻類

本季調查結果,與上季(88年6月)相較,本季各測站發現之附著性藻類大多較上季爲低;而與去年同期相較,今年比去年的分佈較廣。歷次調查結果顯示,季節性變化則不顯著,詳如圖3.1-31所示。

③浮游植物

歷次浮游植物調查結果比較如圖3.1-32所示,各測站細胞密度之變化頗大,尤以84年12月之石碇溪三號測站、85年6月之雙溪一號測站以及85年8月之石碇溪二號、雙溪二號測站、86年8月之雙溪二號測站以及86年12月和87年4月之雙溪一號橋之密度最高,其中84年12月係由於顫藻Oscillatoria spp.及舟形藻Navicula spp.大量繁殖,85年6月爲直鏈藻Melosira spp.及舟形藻Navicula spp.大量繁殖,而85年8月及86年8月則爲小環藻Cyclotella spp.大量繁殖之故,86年12月則爲綠藻之韋斯藻Westella botryoid大量繁殖,而87年4月則爲舟形藻Navicula spp.、變異直鏈藻Melosira varians及肘狀針杆藻Synedra ulna大量繁殖,致部份測

站之浮游植物細胞密度顯著增加,以雙溪一號測站尤爲顯著。本季調查結果與去年同期相較,本季大致較去年同期高。

⑷浮游動物

河川浮游動物歷次調查結果詳如圖3.1-33,由變化趨勢來看,以82年8月之石碇溪二號測站及石碇溪三號測站、84年8月之石碇溪三號測站入雙溪二號測站、86年8月石碇溪二號測站及雙溪二、三號測站、88年4月之石碇溪二號測站及88年8月石碇溪三號測站之測值較高外(82年8月係由於原生動物 Chlamydomonas sp.及節肢動物 Cyclops之幼生大量繁殖,84年8月係由於原生動物 Difflugia sp.及節肢動物 Cyclops sp.大量繁殖,88年4月係由於原生動物的眼蟲大量繁殖,而88年6月係由於節肢動物 Cyclops之幼生大量繁殖,而88年6月係由於節肢動物 Cyclops之幼生大量繁殖所致),其餘各次調查結果並無明顯變化,而於季節性變化方面,於夏季(8月)數量明顯較其他季節豐富之趨勢,而本季測值大致較前季測值爲高,並大多較去年同期調查結果爲高。

(5)水生昆蟲

河川水生昆蟲歷次調查結果比較如圖3.1-34所示,以石碇溪一號測站及雙溪一號測站之水生昆蟲較多,各季幾乎均有採獲,而中、下游測站則較少發現;至於優勢種,歷次調查均以吉田蜉蝣最多。季節性變化方面,各次調查數量互有差異,並未呈現規律之季節變化,近年來之變化並不顯著。本季調查結果仍僅石碇溪一、二號測站及雙溪一號測站有採獲,並較去年同期爲高。

⑥ 魚類及無脊椎動物

歷次河川魚類調查採獲數量比較如圖3.1-35所示,大體而言,本季調查之魚類數量較上季(88年4、6月份)之調查結果爲低,與去年同期比較則各測站採獲魚類數量亦偏低。

歷次河川甲殼動物調查數量詳如圖3.1-36所示,本季監測結果與去年同期比較差異並不顯著,惟雙溪下游測站結果較低。

歷次河川軟體動物調查採獲數量詳如圖3.1-37所示,本季石碇溪以二號測站及雙溪以一號測站有採獲。與去年同期結果比較,石碇溪二號變化並不明顯,然雙溪1號測站測值卻較低。季節性變化方面尚不顯著,惟自85年6月起數量有較以往增多情形。

本季核能四廠進行之各項工程中,其施工污水及員工生活污水經收集及初步處理後僅排入石碇溪中,並未排入雙溪,且流量僅佔石碇溪流量之1.23%左右,對石碇溪生態之影響應不大;另由上述河域生態歷次調查結果比較,並未呈現異常減少趨勢,可見本季之施工作業對鄰近石碇溪生態,並無明顯的負面影響。

10.海域水質監測

由於本區海域水質良好,多項污染物分析值均在方法偵測極限以下,因此,茲就海域水質與工程施工較有關係之懸浮固體物、濁度及曾經超過水質標準之生化需氧量與大腸菌密度等水質項目,比較其歷次測值變化趨勢(詳圖3.1-38~3.1-41所示)。

在懸浮固體物與濁度方面,83年1~6月懸浮固體物濃度最低均在 10mg/L以下,而83年7月至84年7月之間之濃度較高,多介於10~50mg/L 之間,而後懸浮固體物濃度值多在5~15mg/L之間振盪變化,研判可能係 因本區海域位於台灣東北角,由於受颱風或東北季風之影響,使得波浪 擾動及降雨量增加,以致沿岸水體之懸浮固體物濃度昇高。另外,比較 本季與去年同期海域之懸浮固體物濃度,測值大致相差不大,惟9月本季略有升高趨勢。

在生化需氧量及大腸菌密度方面,生化需氧量歷次調查結果如圖 3.1-39所示,於84年8月前各測站中大致以一號測站表、底層之測值較高 且 多 有 超 出 標 準 情 形 。 比 較 歷 次 生 化 需 氧 量 調 查 結 果 , 可 發 現 於 82 年 8月 ~12月之間,海域水質之生化需氧量較高,於83年則有明顯降低,惟一 號測站之生化需氧量自83年12月起又有昇高情形,至84年8月起則又有下 降 趨 勢 , 之 後 各 季 則 斷 斷 續 續 有 一 兩 測 站 測 值 超 出 甲 類 海 域 水 體 水 質 標 準 2 m g/L(8 6 年 7 月 例 外) , 而 本 季 除 七 月 份 測 値 外 , 其 餘 均 符 合 標 準 ; 而 在 大 腸 菌 密 度 (詳 圖 3.1-40) 方 面 , 84 年 11 月 前 之 監 測 結 果 均 以 一 號 測 站水樣較常出現超過標準之測值,由於其超過標準的情形係各季斷斷續 續 偶 有 發 牛 , 並 非 持 續 存 在 的 污 染 情 況 , 研 判 本 區 海 域 由 於 一 號 測 站 較 接近人為污染來源,以致此測站水質大腸菌密度明顯較差;惟自85年4月 至85年10月,各測站表、底層水樣超過標準之頻率增高(85年4月、7月、 10月份的大腸菌密度均偏高),屬不常見情形;而本季各測站測值均符合 甲類海域水體水質標準。另針對海域施工可能引起海水濁度增加問題, 就歷年調查濁度變化情形繪圖如3.1-41所示,除部份測值偏高外,其餘測 值大多低於6NTU,本季則多維持在4.4NTU以下。

循環水進水口防波堤及重件碼頭工程7月份已於海域施工然由本季 監測結果顯示,各項測值均與歷年之背景調查大致相同,並且本季除生 化需氧量外,各測站測值均符合甲類海域水體水質標準,故目前施工應 對海域並未造成污染。

11.海域生態監測

(1)海域生態環境因子之硝酸鹽、亞硝酸鹽、磷酸鹽及矽酸鹽等營養鹽含量,隨海域浮游植物生長的季節性變化而有不同消長,並無異常測值 出現。各測站歷次葉綠素甲含量調查結果,比較如圖3.1-42所示,由圖 顯示本海域之葉綠素甲含量於84年8月前變化較大,惟自84年11月起大多維持在0.2 μ g/L~1.5 μ g/L之間。本季葉綠素甲含量較去年同季(87年8月)高,亦比上季測值高2倍左右。此外,各測站歷次基礎生產力調查結果比較如圖3.1-43所示,歷次調查測值無太大之季節性變化,84年11月以後調整結果大致均維持於0.2~0.8 μ g/L/hr之間。另就本季與去年同期(87年8月)及上一季(88年4月)比較,調查結果顯示本季測值均較高。一般而言,葉綠素甲、基礎生產力、植物性浮游生物含量與光合作用有關,因此三者之高低分佈大致呈現出正相關之對應關係。由歷次之監測結果變化圖可看出,同季之葉綠素甲與基礎生產力之水平區域性分佈類似,惟於不同季時,因受氣溫、潮流及其他複雜環境因素影響,則無法呈現葉綠素甲與基礎生產力間的顯之對應關係;但由85年11月份起,葉綠素甲與基礎生產力間之相關係較爲明顯。

- (2)各測站歷次浮游植物之細胞密度變化情形如圖3.1-44所示,各測站間細胞平均密度之季節性變化大致夏季較高趨勢,其中以83年8月及85年8月測值較高,而本季測值與去年同期(87年8月)相較,兩季測值相近。至於優勢種類方面,歷次調查主要優勢種出現情形列於表3.1-24,由表中可知本季優勢種爲Chaetoceros spp.,與上一季不同,而去年同期則以舟形藻Navicula spp.爲主要優勢種。上述各種浮游植物均屬本省沿海常見之種類,並無特殊種類異常增殖情形發生。
- (3)歷次浮游動物個體量調查結果如圖3.1-45所示,各測站間互有差異,並沒有固定較高或較低之測站存在,而且測站間之季節性變化較不一致。各次調查大致以82年8月、83年4月、84年2月及85年8月浮游動物較多,而本季(88年7月)浮游動物調查結果比去年同期(87年8月)較低。此外,除季節性變化因素外,各測站間亦有很大之差異,因而影響浮游動物之分佈。

- (4)亞潮帶岩礁區之底棲無脊椎動物歷次調查結果,除極少數種類偶有少量發現外,大多數種類於各季皆有出現,種類變化不大,有時僅有相對數量上之變化而已。歷次所發現記錄之種數,以棘皮動物及軟體動物種類較多,但族群分佈方面,則以各種棘皮動物最爲豐富,優勢種類以白尖紫叢海膽最多。
- (5)本監測工作歷次於岩礁區進行之魚類調查結果,比較如圖3.1-46所示, 各季發現魚類之種數介於34~68種之間,各次調查之魚類組成結構並 無重大改變。本季魚種數量較去年同期減少,但較上一季增多。歷次 調查之魚類科別與種數,主要以隆頭魚科及雀鯛科之魚種爲最多,其 次爲蝶魚科,而優勢種類則以藍雀鯛爲最多,顯示本海域有爲數不少 之定棲性魚種。
- (6)歷次於澳底及鹽寮沿岸潮間帶所進行之大型藻類調查結果,兩地區各季發現之大型藻類介於2~17種之間,本季則計發現13種,與去年同期11種及上一季10種相近;優勢種類方面,歷次調查多以綠藻門之Ulva spp.較多,本季與歷次調查結果一致,綠藻門之Ulva fasciata(裂片石蓴)出現比例頗高,此外本季於鹽寮及澳底地區除普遍發現Ulva factuca存在,另外Enteromopha intestinalis(腸滸苔)及Ulva lactuca(石蓴)亦相當多。依據核四廠規劃前背景報告「鹽寮核能(四廠)電廠附近海域之生態環境研究」顯示,鹽寮地區潮間帶之藻類組成包括綠葉、褐藻及紅藻,其種類以綠藻Ulva sp.及Enteromorpha sp.爲主要優勢種,本監測計畫調查結果與該報告相似,應可反應核四鹽寮地區潮間帶之海藻相。
- (7)本季(88年8月)於澳底港外突出礁石區進行之珊瑚覆蓋度調查結果,於水深採樣區5M~7.5M之平均覆蓋度約46%~33%,而於水深10M之平均覆蓋度則降爲21%;而去年87年8月在此區域同樣水深樣區(5M、7.5M及10M)之平均珊瑚覆蓋度調查結果分別爲52%、52%及44%,由本季與去年同期比較可知,本季各水深之平均覆蓋度均有下降情形;但與

上季測值差不多(43%、34%及19%)。因此,雖然採樣時海域已有工程施工,但推測此區域珊瑚覆蓋度之變化應與施工無關。

依據歷次之海域生態調查結果顯示,本季與去年同期調查結果於珊瑚平均覆蓋度方面有降低情形,其餘項目則大致無明顯差異,且亦未發現因人爲污染而造成顯著之變化,因此,本季海域生態調查結果並未受核四施工而有不良的影響。

12.漁業調查

圖3.1-47~3.1-48爲貢寮地區自民國八十二年八月起至今各月份所調查有關各類漁業之單位努力漁獲量(CPUE)及單位努力漁獲產値(IPUE)等之趨勢圖。

在釣具漁業方面,本季之CPUE如圖3.1-47所示,本季調查88年6月至88年8月之CPUE與前四年同一時期比較,大致較84年爲低,與85年至87年比較則略微減少,但差異不大。而IPUE方面,本季調查88年6月至88年8月之IPUE與前四年同一時期比較,亦大致較84年爲低,與85年至87年則差異不顯著(如圖3.1-48所示)。

在燈火漁業方面,本季之CPUE如圖3.1-47所示,以88年7月份較高, 其值爲308公斤/天/戸,較87年同期97公斤/天/戸有明顯增加趨勢,而其單 位努力漁獲金額(IPUE)如圖3.1-48所示,本季則以88年8月份6,160元/天/ 戸爲最高,而在84年6月至88年8月中以84年6月之45,642元/天/戸最高, 而以85年8月之4,506元/天/戸最低。今年夏季之CPUE較87年增加,但由 於產量大幅增加之主要漁獲魚種爲低經濟價值的煙管仔,因此產值反而 較去年減少。

在刺網漁業方面,本季(88年6月~88年8月)CPUE分別為12.0、8.2 及33.5公斤/日/戸,IPUE則分別為3.802、3.042、7.187元/天/戸,本季各 月變化及與歷年同期比較如圖3.1-47、圖3.1-48所示,相較結果本季6、7 月大致較歷年爲低,8月則大致與85、86年相近,而較84、87年爲高。

本季飛魚卵漁業爲漁期末,僅有6月份有戸標本戸從事作業;而本次 調查期間爲非鏢旗魚漁業漁期,無漁獲資料,故在此不予比較。

13.海象調查

根據CTD調查結果顯示,本季各測站之表層水溫約在24.5℃~28.7℃之間,與去年同期之監測結果(25.7℃~30.2℃)相較,本季表層水溫平均略爲降低。在水層垂直水溫分佈情況方面,本季8、9月與去年同期相似,在離岸較遠且水深較深之測站(如A10、B10、F8及F10)才有明顯之斜溫層,但本季上下水層溫差<4℃較去年同期溫差4℃~10℃爲小。至於鹽度調查方面,本季各測站表層鹽度約在32.6PSU~34.8PSU左右,去年同期表層鹽度則介於33.0~34.1PSU之間,兩季測值相近,另水層垂直鹽度分佈,本季與去年同期之表層與底層之鹽度差異均不大。

在漂流浮標追蹤調查方面,綜合本季與去年同期調查結果方面,鹽 寮灣內、外大致均維持漲潮西北流,退潮東南流之流況型態;僅7月份漂 流浮標呈退潮往北流之流況,此與去年同期8月20日之3、4、5號浮標情 形相同。至於浮標之平均流速則呈鹽寮灣內流速較鹽寮灣外流速爲低的 情形。

在沿岸潮位及水溫調查方面,本區潮汐係以半日潮爲主,本季平均潮位約在29~32公分(相對於基隆港平均海平面),平均潮差約51~56公分,去年同期之平均潮位約在21~23公分,平均潮差約47~56公分左右,本季較去年同期平均潮位高,但平均潮差則差異不大。

在沿岸水溫調查方面,本季於鹽寮水溫測站測水深一公尺處之平均 溫度介於27.2~28.4℃之間,去年同期沿岸水溫爲26.9℃~29.4℃,本季 溫度與去年同期差異不大。

14.景觀與遊憩活動調查

(1)現場調查遊客數與出售門票數之比較

歷次(84年1月~88年9月)鹽寮海濱公園及福隆海水浴場之遊客數與門票(又分非假日、假日)比較結果,如表3.1-25及圖3.1-49~3.1-52所示;大體而言,若不考慮公園或浴場因故關閉此類特殊原因,遊客人數均以夏季(6~10月)較高,而以11月至3月之遊客數較低。

此外,應用軟體Excel進行迴歸分析,比較遊客數與門票數之相關性,鹽寮海濱公園歷次分析結果相關係數均不佳,可能與多數遊客僅在中途休息,並未購票入園遊玩有關。而福隆海水浴場若不考慮浴場關閉等原因,其非假日之相關係數(R²=0.97)略低於假日(R²=0.99),顯示假日之現場調查遊客數與出售門票數相關性較爲明顯,且兩者間之線性相關性相當高。

② 現場調查遊客數與景觀品質之變化情形

根據現場調查人員之觀察,本季各觀景點除第四觀景點及第五觀景點(西向)自88年2月起1號機廠址附近出現大型吊車,施工作業更加頻繁,使評分略爲降低;第五觀景點(北向)於88年6月起因重件碼頭施工,現場可見起重機作業,亦使評分略爲降低;其餘觀景點附近已無工程開挖,水土保持之植生復育亦進行一段時間,綠化與美化的效果已能顯現,且在靠近台2省道的圍籬外,已栽種綠化樹種,可減低對視覺之衝擊。以目前所蒐集之景觀品質改變情形(詳表3.1-26)與遊客人數觀察記錄分析,各觀景點的景觀品質多維持不變或有逐漸提昇

情形,而遊客人數調查結果主要係受季節變化及假日之影響頗大,初步分析景觀品質改變與遊客人數多寡兩者之相關性不明顯。

15.海域漂砂調查

由現場調查可知,在本調查範圍內之海岸地形,由北而南可分爲三區:第一部份係由澳底漁港北側到石碇溪口,其爲礁盤所形成之海岸;第二部份由石碇溪口以南至挖子港,其爲漂砂活動頻繁之沙灘;第三部份爲挖子港附近之岩盤海岸。

由底質樣品分析結果研判,本調查區內最主要砂源為雙溪溪口,漂砂方向主要往北,愈往東北受砂源之影響愈小。而石碇溪本身因輸砂量較雙溪少,且附近爲岩礁區水深較淺,故其輸砂受波浪作用後,並未停留於此礁岩區,因此底床爲發現有砂的存在。

由本季〔八十八年第三季〕採樣結果之中值粒徑分佈及粒徑資料曲線圖與八十八年第二季及八十七年第三季比較可知,本季漂砂與上述二季砂源動向趨勢並無明顯變化。而於雙溪河口之八十七年第三季低潮線之中值粒徑較八十八第二、三季爲小,可能原因爲本年年中因豐沛之雨量使雙溪上游之砂源往下帶,而於河口堆積之故。

3.1.2 監測結果異常現象因應對策

本季(88年7月~9月)各類環境監測,包括氣象觀測、空氣品質監測、噪音與振動監測、交通流量監測、河川水文監測、河川水質監測、廠區放流水、地下水監測、河域生態監測、海域水質監測、海域生態監測、漁業調查、海象調查、景觀遊憩調查及海域漂砂調查等共15項。其中噪音項目本季有超出管制標準情形,惟噪音歷次及環評階段背景值一直有超出

管制標準之現象,因此其測值應屬環境自然背景值,與核四施工活動無直接關係,並無特殊異常狀況發生。另河川水質及地下水水質 GM1 及 GM10 二監測井水質普遍不佳情形係歷年存在現象,而本季廠區排水之二號排洪渠道及鹽寮三號排洪渠道之懸浮固體值有超出引用之參考標準-87 年放流水標準,將持續監測觀察。本季海水水質於一、四號測站出現生化需氧量超過標準之現象,依其位置(分別位於澳底漁港及福隆海水浴場外側海域)研判,且歷次監測亦時有超出標準情形發生,故應受此海域漁業活動及夏日遊客戲水所造成之有機污染影響。有關上次及本次異常狀況之處理情形詳表 3.1-27 及表 3.1-28。

表3.1-1 核四施工環境監測歷次空氣品質總懸浮微粒

最高二十四小時值監測結果 (單位: μg/m³)

	測站			(<u>∓ ω</u> . μ g·m /					
		澳底	龍門	貢寮	福隆	川島	石碇宮	貢寮焚化廠	歷 次
	時 間	國小	社區	國小	海水浴場	養殖池		入口旁之民宅	平均值
	84年1月	91	32	55	66	長旭旭 42	54	173	73 73
	84年2月	77	98	91	57	57	103	59	77
	84年3月	149	87	75	115	64	113	286	127
	84年4月	102	93	155	78	87	100	120	105
	84年5月	184	48	48	56	56	74	85	79
	84年6月	29	71	78	. 78	54	117	130	121
	84年/月 84年8月	53 37	95 28	141 25	85 44	34 14	58 42	95 115	80
	84年9月	67	41	42	32	81	93	211	44
	84年10月	98	117	54	125	41	92	117	81 92
	84年11月	121	117	73	75	53	213	177	119
l _	84年12月	146	72	42	134	93	107	194	113
最	85年1月	152	51	46	70	90	59	116	83
	85年2月	88	105	85	50	74	179	176	108
	85年3月	59	42	42	81	116	83	105	75
	85年4月	61	78	44	65	35	42	103	61
高	85年5月 85年6月	108 57	134 36	101 42	217	46 37	77	220 97	129
	85年7月				171				66
	85年8月	50 75	31 63	58 80	171 125	24 36	68 69	66 48	67 71
24	85年9月	86	151	53	304	39	54	101	113
-:	85年10月	82	84	39	123	42	71	60	72
	85年11月	110	121	50	174	67	105	125	107
	85年12月	177	100	91	228	104	152	93	135
小	86年1月	66	92	37	69	99	84	107	79
1,1)	86年2月	92	51	40	106	27	40	62	60
	86年3月	41	39	55	137	<u>58</u>	61	112	72
	86年4月	89	104	74	185	70	102	76	100
	86 年 5月 86 年 6月	67 42	54 57	36 76	90 37	68 68	66 60	83 63	66 58
	86年7月	49	24	47	76	33	54	54	48
	86年8月	184	35	49	24	40	66	30	61
	86年9月	115	58	58	110	60	76	59	77
	86年10月	80	78	90	131	53	62	61	79
	86年11月	123	61	65	98	36	75	116	82
	86年12月	124	73	34	49	41	81	93	71
	87年1月	77	67	47	95	86	33	105	73
	87 年 2月 87 年 3月	113 89	56 82	44 29	65 63	42 42	51 100	128 102	71 73
	87年3月 87年4月	137	75	46	27	6l	130	52	75 75
	87年5月	37	70	45	71	30	46	41	49
	87年6月	61	34	65	24	45	96	45	53
	87年7月	42	36	52	43	28	99	160	66
1	87年8月	39	29	41	80	40	72	112	59
	87年9月	32	84	78	61	30	59	74	60
	87年10月	48 176	64 63	42 33	21 44	58 54	129 94	78 148	63
	87年11月	104	136	80	93	135	181	93	87
	87年12月 88年1月	176	103	109	120	38	174	71	117 113
	88年2月	156	176	69	72	169	112	198	136
	88年3月	75	61	43	63	44	61	74	60
	88年4月	105	119	80	139	90	82	205	117
	88年5月	68	41	39	52	53	107	254	88
1	88年6月	61	42	39	49	56	92	51	56
1	88年7月	86	43	48	32	49	92	60	58
	88年8月	55	29	28	29	34	80	41	42
友沺	88年9月 站平均值	40 91	34 70	52 59	<u>に</u> 97	69 58	60 87	68 108	54 81
台思	川田十八旧	91	70	39	97	38	8/	108	81

註: (1)空氣品質標準總懸浮微粒24小時值為250 µ g/m³ (2)"*"表示本監測工作空氣品質歷次監測結果之最高值

^{(3)&}quot;□"表受地震影響,電源中斷

表3.1-2 核四施工環境監測空氣品質氮氧化物 最高日平均值監測結果

(單位: ppb)

	測站			(4 m· ppo)					
		澳底	龍門	貢寮	監測地福隆	川島	石碇宮	貢寮焚化廠	歷 次
	時 間	國小	社區	國小	海水浴場	養殖池	Пже	入口旁之民宅	平均值
	84年1月	20	22	29	34	<u> </u>	42	96	35
	84年2月	24	20	30	30	20	43	39	29
	84年3月	23	8	33	34	17	37	90	35
	84年4月	24	19	21	32	20	27	44	27
最	84年5月	31	18	17	39	11	39	66	32
	84年6月	22	18	23	48	20	39	78	35
	84年/月 84年8月	20 25	21 19	26 12	27	13	33 21	55 50	29
	84年9月	17	14	20	22	17	26	61	23 25
高	84年10月	20	17	14	29	11	37	27	22
'	84年11月	32	22	21	15	14	54	91	36
	84年12月	28	23	28	23	14	40	28	26
В	85年1月	20	20	18	26	14	48	68	31
"	85年2月	19	20	24	15	15	53	42	27
	85年3月	37	18	21	21	17	31	73	31
777	85年4月	49 40	33 36	25 25	31 30	33 40	22 47	141 163	48
平	85年5月	36	26	42 42	30 44	24	60	. 103	54
	85年7月	35							46
l	85年8月	24	18 24	15 25	43 28	17 18	59 50	115 44	43 30
均	85年9月	33	30	42	26	24	25	54	33
	85年10月	21	12	27	26	14	30	62	27
	85年11月	15	7	3	25	17	45	22	19
	85年12月	33	18	17	17	6	41	49	26
	86年1月	32	23	20	36	14	42	50	31
	86年2月	19	21	9	37	12	29	40	24
	86年3月 86年4月	25	25	20	32	16	28	55	29
	86年5月	22 31	18 16	25 15	19 18	14 17	31 24	46 44	25 23
	86年6月	28	15	26	19	12	27	45	24
	86年7月	27	16	22	20	21	27	37	24
	86年8月	20	27	22	26	20	33	49	28
	86年9月	18	15	25	22	16	27	44	24
	86年10月	40	22	31	24	12	24	39	27
	86年11月	25	21	21	49	15	33	32	28
	86年12月	39	20	35	39	27	35	50	35
	87年1月	40	22	25	20	18	25	67	31
	87年2月	40 9	17 19	25 15	24 25	3	34 35	61 33	29 21
	87 年 3月 87 年 4月	21	10	13	17	9	35	23	18
	87年5月	15	11	9	11	- 7	23	20	14
	87年6月	24	8	17	7	7	23	30	17
	87年7月	7	8	15	19	7	27	26	16
	87年8月	14	8	11	8	7	21	18	12
	87年9月	8	6	22	7	10	13	20	12
	87年10月	15	4	15	25	4	19	15	14
	87年11月	4	12 8	16 13	3 21	10 4	18 16	30 6	13
	87年12月 88年1月	10	8	12	27	4	31	9	10 14
	88年2月	18	11	25	19	<u>4</u> 7	27	13	14 17
	88年3月	15	16	17	16	10	26	33	19
	88年4月	18	9	12	15	7	17	24	15
	88年5月	22	11	15	28	5	28	24	19
	88年6月	14	13	20	18	8	22	21	17
	88年7月	20	11	18	15	8	28	25	18
	88年8月	19	17	14	16	12	26	17	17
रू भा	88年9月	14	13	17	し こ	8	17	19	15 25
合洪	站平均值	23	17	20	28	13	32	48	25

註: (1)空氣品質標準未對氮氧化物訂定限值 (2)"*"表示本監測工作空氣品質歷次監測結果之最高值 (3)"□"表受地震影響,電源中斷

表3.1-3 核四施工環境監測歷次空氣品質氮氧化物 最高小時值監測結果 (<u>單位</u>: ppb)

	測站			(丰 🚾 · ppo)					
	W3 7H	澳底	龍門	貢寮	監測地福 隆	川島	石碇宮	貢寮焚化廠	歷 次
	n± 88	國小	社區						
	時 間 84年1月			國小	海水浴場	養殖池	0.1	入口旁之民宅	平均值
	84年2月	<u>44</u> 53	38	86	71	18	81 82	204	77
	84年3月	48	36 25	56 105	67 67	35 37	95	120 168	64 78
	84年4月	48 41	23	35	67	50 50	88	100	58
	84年5月	80	28	30	68	14	78	119	60
	84年6月	40	27	38	96	29	102	130	66
最	84年/月	57	37	73	67	19	73	137	66
	84年8月	47	34	17	45	22	40	135	49
	84年9月	35	73	36	53	28	42	151	60
	84年10月	49	29	36	71	14	89	93	54
高	84年11月	70	42	44	31	19	138	169	73
	84年12月	63	33	41	41	20	82	69	50
	85年1月	33	32	84	88	26	89	148	71
小	85年2月	37	35	51	32	82	104	80	60
٠,١,	85年3月	52 80	31	36 36	47 69	28	59 51	154	58
	85年4月 85年5月	80 142	61	63	56	66 107	51	. <u>368</u> 281	60
	85年6月	66	48	73	79	37	116	1/2	117
時	85年7月	91	25				123		84
	85年8月	49	94	27 38	173 76	20 23	104	265 84	103 67
	85年9月	92	53	73	55	37	35	172	74
值	85年10月	34	23	64	51	20	52	118	52
	85年11月	31	16	11	43	20	53	77	36
	85年12月	92	27	39	52	13	74	100	57
	86年1月	66	36	42	58	17	125	97	63
	86年2月	31	35	23	149	35	69	75	60
	86年3月	45	44	49	70	35	86	143	67
	86年4月	58	28	38	39	24	69	82	48
	86年5月	58	31	36	36	31	54	89	48
	86年6月	45	24	76	32	23	55	78	48
	86年7月 86年8月	46	21	36	32	36	<u>55</u>	85	44
	86年9月	25	41	33	58	32	85	71	49
	86年10月	32 52	21 27	37 58	49 55	18 20	52 42	71 75	40 47
	86年11月	37	38	36	77	19	58	80	49
	86年12月	62	25	60	81	36	64	69	57
	87年1月	67	36	58	46	30	77	123	62
	87年2月	56	23	50	48	5	62	85	47
	87年3月	31	41	38	52	22	64	73	46
	87 年 4月	104	18	29	38	19	77	59	49
	87年5月	39	19	27	34	15	68	53	36
	87年6月	39	15	42	23	17	54	54	35
	87年7月	13	20	30	32	13	65	47	31
	87年8月	33	17	26	13	12	52	38	27
	87年9月	25 34	16 10	43 37	35 87	20 6	37 59	40 31	31
	87年10月 87年11月	11	22	38	12	35	34	100	38
	87年11月 87年12月	6	15	42	39	8	26	18	36 22
	88年1月	21	20	27	60	7	79	31	35
	88年2月	36	31	43	84	19	65	37	45
	88年3月	32	40	41	29	26	48	86	43
	88年4月	32	19	23	41	16	53	56	34
	88年5月	53	18	35	86	14	83	72	52
	88年6月	28	22	38	27	23	49	45	33
	88年7月	32	26	62	35	27	76	51	44
	88年8月	59	21	25	32	25	68	47	40
A 1111	88年9月	41	19	33	L.	13	32	33	29
	站平均值	49	32	42	66	26	70	102	54

註: (1)空氣品質標準未對氮氧化物訂定限值 (2)"*"表示本監測工作空氣品質歷次監測結果之最高值 (3)"□"表受地震影響,電源中斷

表3.1-4 核四施工環境監測空氣品質二氧化氮 最高日平均值監測結果

(單位: ppb)

	測站			(丰 匹· ppo)					
	烘り料	海床	並588	子安	監測地		工 控令	- 安林ル麻	庭 为
		澳底	龍門	貢寮	福隆	川島	石碇宮	貢寮焚化廠	歷次
	時 間	國小	社區	國小	海水浴場	養殖池		入口旁之民宅	平均值
	84年1月	12	16	20	16	4	15	26	16
	84年2月	17	17	22	21	12	17	14	17
	84年3月	16	6	18	14	15	16	29	16
最	84年4月	12	12	12	25	14	14	28	17
	84年5月	14	12	10	19	1/	18	22	15
	84年6月	14	11	15	28	10	19	20	17
	84年/月	9	18	19	22	7	15	18	15
高	84年8月	13	13	6	11	6	12	11	10
	84年9月 84年10月	12	8	10	13	13	13	20	13
	84年11月	13	11	8	14	6	20	17	13
	84年12月	19	13	10	8	8	25	26	16
日	85年1月	17 13	14 13	18 10	12 13	9	15 22	11 25	14
	85年2月	13	13	13	9	10	23	24	15 15
1	85年3月	23	12	14	16	12	20	32	15 18
平	85年4月	34	22	16	16	27	11	52	26
—	85年5月	22	23	17	21	17	18	75	20
	85年6月	23	19	25	28	17	29	32	25
l	85年7月	16	16	8	14	10	27	52	20
均	85年8月	17	18	20	21	16	41	18	22
	85年9月	20	20	25	14	17	16	21	19
	85年10月	11	7	14	16	10	20	19	14
	85年11月	8	5	2	17	9	21	9	10
	85年12月	20	8	<u>- 1</u> 1	10	6	20	18	13
	86年1月	23	15	11	17	9	22	14	16
	86年2月	11	12	6	19	9	16	18	13
	86年3月	14	16	12	16	11	13	20	15
	86年4月	14	11	13	11	9	17	22	14
	86年5月	15	10	10	13	10	12	20	13
	86年6月	18	9	14	10	7	15	17	13
	86年7月	16	9	15	11	13	19	24	15
	86年8月	12	13	12	17	9	14	16	13
	86年9月	11	10	13	12	10	13	16	12
	86年10月	17	13	18	13	5	9	16	13
	86年11月	16	14	11	27	9	18	13	15
	87年1月	24 22	10 14	14	18	17 12	16	19 22	17 17
		27	7	16	14		15 17	30	
	87 年 2月 87 年 3月	4	13	15 11	14 13	<u>2</u> 7	16	16	16 12
	87年3月	15	7	6	10	7	20	10	11
1	87年5月	9	9	3	8	4	8	8	7
	87年6月	15	4	9	3	4	16	17	10
	87年7月	3	5	9	11	4	17	5	8
	87年8月	9	5	5	3	4	14	10	7
	87年9月	4	5	18	4	6	7	10	8
	87年10月	11	3	9	9	3	13	7	8
	87年11月	3	9	10	3	6	9	18	8
	87年12月	2	5	9	13	3	8	4	6
	88年1月	7	5	9	19	3	15	5	9
	88年2月	12	9	18	13	5	14	7	11
	88年3月	12	10	9	10	8	16	20	12
	88年4月	12	7	9	9	6	10	14	10
	88年5月	17	7	9	14	3	11	10	10
1	88年6月	10	9	12	12	6	12	10	10
	88年7月	12	6	9	5	6	15	11	9
	88年8月	11	14	9	10	9	15	7	11
友沺	88年9月 站平均值	6 13	9 11	9 12	<u>し</u> 14	<u>6</u> 9	9 16	10 19	8 13
口识	近十八世	13	11	12	14	9	10	19	13

註: (1)空氣品質標準二氧化氮小時平均值為250ppb (2)"*"表示本監測工作空氣品質歷次監測結果之最高值 (3)"□"表受地震影響,電源中斷

表3.1-5 核四施工環境監測空氣品質二氧化氮 最高小時值監測結果 (單位: ppb)

	測站			(丰 匹, ppo)					
	/A3 PH	澳底	龍門	貢寮	監測地福隆		石碇宮	貢寮焚化廠	展 次
	n+ 88						口账占		歷次
	時間	國小	社區	國小	海水浴場	養殖池		入口旁之民宅	平均值
	84年1月 84年2月	24	23	72	28	15	30	38	33
	84年3月	35 38	34 22	35 42	65 29	26 35	31 32	30 42	37 34
_	84年4月	22 22	22	21	60	<u> </u>	34	8I	40
最	84年5月	31	22	21	29	9	32	31	25
	84年6月	26	18	24	37	16	30	27	25
	84年/月	16	32	70	32	12	27	29	31
高	84年8月	20	15	8	21	9	24	17	16
	84年9月	21	15	16	22	22	20	39	22
	84年10月	23	22	19	22	10	32	57	26
小	84年11月	32	26	21	20	13	44	41	28
٠,٠	84年12月	29	25	30	19	14	28	20	24
	85年1月	23	23	18	36	22	32	34	27
n+	85年2月	30	27	25	24	15	37	58 49	31
時	85年3月 85年4月	33 56	24 45	26 23	34 46	22 59	34 26	99	32
	85年5月	62	37	36	34	40	40	114	51
	85年6月	42	29	43	54	29	59	44	52
值	85年7月	28	23	12	22	12	48	99	43 35
	85年8月	28 25	43	33	38	12 19	64	23	35
	85年9月	49	33	78	26	29	22	52	41
	85年10月	19	17	28	32	14	36	35	26
	85年11月	16	13	10	31	12	29	23	19
	85年12月	49	15	25	28	12	34	33	28
	86年1月	42	28	30	24	12	45	25	29
	86年2月	19	22	16	36	24	30	25	25
	86年3月	28	32	24	26	21	27	29	27
	86年4月	36	20	23	27	15	30	39	27
	86年5月	32	21	21	26	18	27	31	25
	86年6月 86年7月	26	14	35	20	14	24	34	24
	86年8月	23	12 19	24	17	24 15	30 21	44 27	25
	86年9月	16 16	19	20 19	48 27	11	21	28	24 19
	86年10月	27	15	24	25	10	18	28	21
	86年11月	26	20	17	42	12	33	28	$\frac{21}{25}$
	86年12月	35	13	20	33	25	30	29	26
	87年1月	46	25	37	30	21	36	32	32
	87年2月	49	13	33	21	5	30	42	28
	87年3月	15	30	22	22	19	30	28	24
	87年4月	48	15	14	19	15	39	27	25
	87年5月	25	17	10	25	10	17	19	18
	87年6月	23	9	19	8	11	31	27	18
	87年7月	7 21	16 12	14 15	19 6	10	33 30	11 17	16
	87年8月	10	14	32	11	12	22	16	16
	87年9月 87年10月	20	5	18	44	4	47	16	17 22
	87年10月	7	17	21	10	29	18	38	20
	87年11月	4	10	23	23	5	13	12	13
	88年1月	14	17	22	40	6	31	18	21
	88年2月	28	26	30	35	14	25	18	25
	88年3月	25	29	27	17	22	27	42	27
	88年4月	22	17	13	19	12	21	33	20
	88年5月	41	14	18	30	9	26	22	23
	88年6月	21	16	<u>17</u>	17	15	27	24	20
	88年7月	19	13	27	10	18	44	21	22
	88年8月	29	17	17	14	17	38	13	21
夕汨	88年9月 站平均值	14 26	14 21	22 24	28	10 17	17 31	17 35	16 25
口点		∠0	ΔI	<i></i>	28	1 /	- 51	33	23

註: (1)空氣品質標準二氧化氮小時平均值為250ppb (2)"*"表示本監測工作空氣品質歷次監測結果之最高值 (3)"□"表受地震影響,電源中斷

表3.1-6 核四施工環境監測空氣品質一氧化碳

(單位: ppm) 最高小時值監測結果 監測地點 站 龍門 澳底 貢寮 福 降 川島 石碇宮 貢寮焚化廠 歷次 國小 國小 海水浴場 平均值 時間 补區 養殖池 入口旁之民宅 84年1月 1.9 1.7 1.5 1.5 2.9 1.7 1.5 84年2月 0.9 1.4 1.8 2.4 1.4 2.41.8 84年3月 3.6 1.4 1.5 1.2 1.4 1.6 1.6 1.3 1.6 1.2 19 2.5 0.8 <u>1.4</u> 84年4月 84年5月 1.6 1.4 1.7 1.5 1.2 1.5 2.6 1.6 84年6月 0.9 1.01.3 1.01.3 1.6 1.4 84年7月 1.0 I.I1.6 1.2 091.5 1.3 1 84年8月 0.9 0.7 0.9 1.3 1.5 2.2 2.1高 84年9月 09() 9 1.8 1.3 1.4 1.5 1.3 1.6 84年10月 0.8 1.9 1.6 1.3 1.6 1.5 1.6 84年11月 2.7 0.615 1.3 1.2 1.2 3.1 小 84年12月 1.7 2.3 1.5 0.9 1.0 2.1 1.3 1 5 85年1月 1.9 1.6 1.1 2.42.41.1 1.2 17 85年2月 1.0 1.6 1.5 1.8 85年3月 1.2 0.62.1 2.11.2 1.8 85年4月 2.1 0.7 0.91.2 0.9 0.9 1.8 1.2 1.0 85年5月 1.2 1.2 0.9 1.2 I.I2.01.2 85年6月 1.9 2.11.3 2.11.1 1.0 0.91.5 值 85年7月 1.6 2.8 0.5 3.3 1.8 3 5 85年8月 2.1 1.1 0.8 1.1 1.1 0.7 1.1 85年9月 1.0 0.9 1.3 0.8 1.1 1.0 2.1 1.2 85年10月 85年11月 0.8 0.8 0.9 0.9 1.0 0.9 0.7 1.3 0.9 0.3 0.50.8 0.91.0 85年12月 1.5 0.5 1.4 0.6 0.8 0.8 1.8 1.1 86年1月 1.0 0.5 1.0 0.5 0.6 1.1 0.8 0.8 86年2月 3.1 0.5 0.7 1.7 86年3月 0.7 0.7 1.4 0.51.1 0.7 86年4月 0.7 0.90.40.70.6 0.3T.086年5月 1.1 1.1 1.1 0.81.0 1.4 0.8 1.0 0.7 0.3 0.40.9 86年6月 ().40.6().70.686年7月 0.6 0.5 0.5 0.7 0.6 1.3 0.8 0.7 86年8月 0.9 0.7 0.7 0.7 0.9 1.3 1.0 0.9 86年9月 0.4 0.5 0.6 1.8 0.8 0.8 1.0 0.8 86年10月 0.8 0.3 0.9 0.9 0.6 0.9 0.8 0.7 86年11月 1.0 0.7 0.9 1.0 0.9 1.0 0.5 0.9 86年12月 1.8 0.7 0.8 1.1 1.0 1.1 1.4 1.1 87年1月 0.9 0.7 0.7 87年2月 87年3月 0.9 1.2 0.7 1.2 1.5 1.4 1.5 1.0 0.6 1.0 1.7 0.9 0.8 1.1 1.0 1.0 0.6 87年4月 2.0 0.6 0.6 0.7 0.70.80.9 87年5月 () 9() 9() C 1.0 1.2 1.2 0.887**年**6月 1.1 0.7 1.0 0.4 0.3 0.6 0.5 0.7 0.687年7月 0.6 0.7 0.6 0.50.5 0.5 0.6 87年8月 0.7 0.4 1.0 0.9 0.3 1.1 0.4 0.71.0 1.2 1.3 0.60.71.1 1.1 87年9月 1.0 87年10月 1.2 0.3 0.6 0.4 0.7 0.5 1.0 0.7 0.8 0.9 0.4 0.3 0.6 0.5 ().787年11月 0.6 87年12月 0.8 0.8 0.5 0.7 0.4 0.8 0.6 0.788年1月 88年2月 1.5 0.9 1.3 0.8 1.0 1.0 0.6 1.0 0.9 0.8 1.0 1.1 0.6 0.7 1.3 0.9 88年3月 0.9 0.9 0.9 0.9 0.7 0.8 1.0 1.0 88年4月 0.9 0.9 0.9 0.9 0.9 1.0 0.7 88年5月 1.7 0.9 0.9 1.5 0.8 0.8 0.8 1.1 88年6月 1.0 0.7 0.7 0.9 0.7 0.8 1.0 0.8 88百 E7 ⊨ 1.0 0.5 0.90.80.6 0.90.90.888年8月 88年9月 0.6 0.8 0.6 0.8 0.7 0.9 0.5 0.8 0.5 0.90.5 0.4Г 0.6 0.6

13

1.0

1.3

 $1.\bar{3}$

註: (1)空氣品質標準一氧化碳小時平均值為35ppm

(3)"口"表受地震影響,電源中斷

1.3

各測站平均值

^{(2)&}quot;*"表示本監測工作空氣品質歷次監測結果之最高值

表3.1-7 核四施工環境監測空氣品質一氧化碳 最高八小時值監測結果

(單為: ppm) 測站 監測地點 龍門 川島 貢寮焚化廠 澳底 貢寮 福 降 石碇宮 歷 次 國小 社區 國小 海水浴場 養殖池 入口旁之民宅 平均值 時間 84年1月 0.9 1.8 0.91.4 1 1 1.0 13 84年2月 1.5 1.2 1.3 0.4 1.1 1.2 1.8 1.7 84年3月 1.5 0.5 1.0 1.5 1.0 0.8 1.0 1.1 1.1 84年4月 1.2 1.0 1.0 0.80.81.0 0.9 1.3 84年5月 1.2 1.0 1.4 1.0 1.2 1.9 1.3 84年6月 ().5 0.8 0.7Т.Т 1.2 1.2 1.2 1.0 84年/月 0.9 1.0 1.2 1.0 0.81.2 1.21.0 84年8月 0.8 0.60.6 1.0 1.4 1.6 1.6 84年9月 0.7 0.7 1.1 1.1 0.6 1.5 1.3 1.0 高 84年10月 0.9 2.0I.I1.3 1.2 1.2 1.5 1.3 84年11月 1.0 0.8 0.6 2.5 0.6 1.3 1.4 1 84年12月 1.4 2.1 1.4 0.8 0.8 1.9 1.2 1.4 85年1月 2.00.8 1.3 1.6 2.11.5 1.1 1.5 0.9 85年2月 1.1 1.3 1.2 1.6 1.4 1.8 1.3 八 85年3月 1.8 () (0.5 19 1.01.7 7.7 1.4 85年4月 1.6 0.7 1.0 0.7 0.7 0.7 1.8 1.0 85年5月 0.9 0 / 0.8 () X () 9 1 () \perp () 0.9 85年6月 1.3 1.6 1.1 1.6 0.9 0.9 0.7 1.2 85年/月 2.00.4 0.5 小 85年8月 0.7 1.0 0.6 0.7 1.2 0.7 0.8 85年9月 0.9 0.5 0.5 0.9 0.4 0.7 0.7 1.1 85年10月 0.6 0.4 0.6 1.0 0.6 0.40.70.6 85年11月 0.8 0.3 0.6 0.2 1.2 0.4 0.785年12月 86年1月 0.6 1.3 0.4 13 0.5 0.7 17 0.9 0.6 0.4 0.7 0.5 0.5 0.7 0.7 0.6 86年2月 0.6 0.9 0.5 0.9 0.4 1.0 15 0.8 86年3月 0.6 0.7 0.5 0.4 0.8 0.5 0.3 0.9 0.9 0.486年4月 0.6 86年5月 0.7 0.8 0.8 0.5 0.6 0.6 0.7 1.1 86年6月 ().5 ().40.2 0.30.6 ().5 ().40.60.6 86年/月 0.5 0.3 0.4 0.5 0.5 1.1 0.7 86年8月 0.8 0.7 0.6 0.7 0.8 0.9 0.8 1.2 86年9月 0.4 0.9 0.3 1.4 0.8 0.4 0.7 0.7 86年10月 0.4 0.8 0.5 0.4 0. 0.9 86年11月 0.8 0.90.6 0.8 0.5 1.0 0.40.7 86年12月 1.5 0.6 0.7 0.7 0.9 0.9 0.9 1.2 87年1月 0.8 0.5 0.8 0.6 0.91.0 1.3 1.7 87年2月 0.6 1.0 0.9 0.5 1.4 1.0 87年3月 0.4 0.9 1.3 0.7 0.7 0.6 1.0 0.8 0.6 0.50.6().70.60.687年4月 1.1 0.7 87年5月 ().7091.1 0.50.81.0 0.70.8 0.9 87年6月 1.0 0.4 0.3 0.20.5 0.40.5 87年7月 0.5 0.3 ().6() 40.30.5() 40.4 0.7 0.8 87年8月 0.20.3 0.7 0.2 0.4 0.5() Ç () 9() 987年9月 ().70.5().61.0 0.8 87**年**10月 0.9 0.3 0.4 0.3 0.6 0.4 0.6 0.5 0.387年11月 () 40.80.3() 40.50.60.5 87年12月 0.7 0.6 0.3 0.6 0.3 0.8 0.5 0.588年1月 0.7 0.7 0.9 0.8 0.5 0.8 0.8 88年2月 0.7 0.5 1.2 0.8 0.7 0.6 88年3月 0.6 0.5 0.5 0.8 0.8 0.8 0.6 0.6 88年4月 0.7 0.6 0.8 0.8 0.70.70.6 0.70.6 88年5月 0.5 0.7 1.0 0.7 0.6 0.8 0.5 88年6月 0.7 0.3 0.8 0.7 0.7 0.7 0.6 88年7月 0.7 0.4 0.8 0.5 0.4 0.7 0.9 0.6 88年8月 88年9月 0.5 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.3 0.4 0.7 0.5 0.8 0.4 0.5 各測站平均值 0.9 0.9 1.0 0.8 0.9 1.0 1.0

註: (1)空氣品質標準一氧化碳最八小時平均值為9ppm

^{(2)&}quot;*"表示本監測工作空氣品質歷次監測結果之最高值

^{(3)&}quot;□"表受地震影響,電源中斷

表3.1-8 核四施工環境監測空氣品質非甲烷碳氫化合物 最高日平均值監測結果

(單位: ppmc)

	測站								
		澳底	龍門	貢寮	福隆	川島	石碇宮	貢寮焚化廠	歷 次
	時 間	國小	社區	國小	海水浴場	養殖池		入口旁之民宅	平均值
	84年1月	0.15	0.29	0.15	0.12	0.30	0.40	0.21	0.23
	84年2月	0.13	0.28	0.29	0.12	0.33	0.36	0.24	0.31
	84年3月	0.06	0.18	0.22	0.21	0.20	0.24	0.09	0.17
l _	84年4月	0.32	0.13	0.10	0.09	0.08	0.08	0.12	0.13
最	84年5月	0.36	0.33	0.18	0.23	0.38	0.17	0.14	0.26
	84年6月	0.56	0.40	0.35 0.29	0.38	0.27	0.73	0.55	0.46
	84年/月 84年8月	0.12	0.24	0.29	0.63	0.43	0.12	0.36 0.43	0.31
	84年9月	0.23	0.33	0.26	0.47	0.31	0.31	0.43	0.36 0.28
高	84年10月	0.22	0.14	0.08	0.10	0.11	0.10	0.13	0.28
	84年11月	0.22	0.20	0.39	0.10	0.11	0.10	0.13	0.13
	84年12月	0.16	0.14	0.76	0.09	0.08	0.21	0.03	0.21
l B	85年1月	0.22	0.14	0.08	0.19	0.21	0.26	0.19	0.18
-	85年2月	0.22	0.02	0.10	0.05	0.03	0.20	0.18	0.11
	85年3月	0.21	0.10	0.16	0.16	0.12	0.07	0.25	0.15
平	85年4月	0.19 0.27	0.09 0.32	0.07	0.06 0.19	0.09 0.10	0.11	0.23 0.51	0.12
'	85年6月	0.27	0.32	0.10	0.19	0.10	0.15	0.15	0.23
	85年/月	0.30	0.17	0.27	0.24	0.23	0.13	0.13	0.23
均	85年8月	0.32	0.88	2.30	1.35	0.61	0.12	0.47	1.13
13)	85年9月	0.76	0.42	0.27	0.32	0.54	0.45	0.48	0.46
	85年10月	0.37	0.17	0.36	0.29	0.32	0.59	0.59	0.38
	85年11月	0.36	0.50	0.43	0.41	0.26	0.29	0.21	0.35
	85年12月	0.76	0.41	0.90	0.29	0.99	0.24	1.28	0.69
	86年1月	0.26	0.21	0.62	0.36	0.23	0.31	0.30	0.33
	86年2月	0.13	0.47	0.65	0.29	0.73	0.30	0.29	0.41
	86年3月	0.20	0.16 0.15	0.10 0.13	0.30	0.11 0.12	0.14	0.18 0.14	0.17 0.15
	86年5月	0.23	0.17	0.60	0.00	0.12	0.12	0.14	0.13
	86年6月	0.43	0.27	0.16	0.17	0.29	0.24	0.31	0.27
	86年7月	0.33	0.93	0.44	0.77	0.16	0.28	0.21	0.45
	86年8月	0.21	0.20	0.40	0.41	0.26	0.24	0.46	0.31
	86年9月	0.36	0.35	0.30	0.14	0.38	0.19	0.23	0.28
	86年10月	0.46	0.24	0.29	0.25	0.15	0.13	0.23	0.25
	86年17月	0.21	0.12	0.14	0.22	0.13	0.14	0.12	0.15
	86年12 月 87 年 1月	0.34	0.28	0.23	0.30	0.22	0.28	0.34	0.28
	87年1月	0.26	0.23	0.27 0.34	0.30 0.17	0.25	0.25	0.26 0.40	0.26 0.30
	87年3月	0.23	0.30	0.20	0.17	0.28	0.19	0.14	0.30
	87年4月	0.41	0.32	0.29	0.28	0.32	0.26	0.32	0.31
	87年5月	0.44	0.26	0.31	0.30	0.30	0.26	0.33	0.31
	87年6月	0.52	0.18	0.32	0.17	0.30	0.24	0.26	0.28
	87年7月	0.35	0.42	0.42	0.46	0.24	0.43	0.35	0.38
	87年8月	0.18	0.24	0.26	0.76	0.41	0.27	0.26	0.34
	87年9月	0.32	0.23	0.41 0.44	0.29 0.25	0.32 0.29	0.27	0.30 0.22	0.31
	87年10月 87年11月	0.44	0.30	0.44	0.23	0.29	0.10	0.25	0.31
	87年12月	0.25	0.24	0.24	0.27	0.26	0.26	0.21	0.25
	88年1月	0.39	0.31	0.40	0.42	0.27	0.42	0.31	0.25
	88年2月	0.48	0.32	0.32	0.42	0.25	0.42	0.43	0.33
	88年3月	0.34	0.22	0.20	0.19	0.23	0.25	0.26	0.24
	88年4月	0.49	0.20	0.24	0.31	0.35	0.29	0.30	0.31
	88年5月	0.28	0.25	0.29	0.22	0.26	0.21	0.33	0.26
	88年6月	0.29	0.22	0.33	0.22	0.26	0.37	0.23	0.27
	88年7月	0.41	0.28	0.37	0.29	0.28	0.26	0.27	0.31
	88年8月 88年9月	0.33	0.24 0.27	0.27	0.31	0.23	0.38	0.30 0.34	0.29 0.35
各測	。。 站平均值	0.36	0.27	0.35	0.32	0.33	0.40	0.34	0.33
-	12日 70日	0.50	0.50	0.55	0.54	0.41	0.41	V.J1	0.33

註: (1)空氣品質標準未對非甲烷碳氫化合物訂定限值

^{(2)&}quot;*"表示本監測工作空氣品質歷次監測結果之最高值

^{(3)&}quot;□"表受地震影響,電源中斷

表3.1-9 核四施工環境監測空氣品質非甲烷碳氫化合物 最高小時值監測結果

(單位: ppmc)

	測站								
		澳底	龍門	貢寮	監測地福 隆	川島	石碇宮	貢寮焚化廠	歷 次
	時 間	國小	社區	國小	海水浴場	養殖池	пжп	入口旁之民宅	平均值
	84年1月	0.29	0.92	0.23	0.28	食俎/ (8)	0.89	<u> </u>	0.56
	84年2月	0.29	0.60	0.23	0.28	0.77	0.83	0.58	0.70
	84年3月	0.12	0.35	0.50	0.76	0.31	0.65	0.22	0.36
	84年4月	0.61	0.80	0.90	0.24	0.24	0.23	0.40	0.49
最	84年5月	0.77	0.52	0.33	0.77	1.84	0.29	0.47	0.71
ДX	84年6月	0.94	0.76	0.94	0.92	1.14	0.97	0.96	0.95
	84年/月	0.56	0.36	0.74	1.20 0.70	0.59	0.20	0.66 0.68	0.62
-	84年8月 84年9月	0.43	0.58	0.49	0.70	0.85	0.67	0.08	0.63
高	84年10月	0.79	0.72	0.00	1.46	0.18	0.20	0.29	0.62 0.51
	84年11月	0.79	0.31	0.13	3.08	0.18	1.32	0.54	1.02
١.	84年12月	0.40	1.02	1.32	0.17	0.19	0.80	0.16	0.57
小	85年1月	0.79	0.51	0.15	0.38	0.38	0.54	0.31	0.44
	85年2月	0.61	0.04	0.87	0.16	0.07	0.30	0.24	0.33
	85年3月	0.51	0.21	0.25	0.42	0.29	0.12	0.80	0.37
時	85年4月	0.52	0.85	0.19	0.18	0.23	0.68	0.39	0.43
	85年5月	0.48	0.85	0.19	0.48	0.28	0.45	0.58	0.47
	85年6月	0.76	0.34	0.73	0.70	0.91	0.39	0.45	0.61
值	85年7月	0.89 1.57	0.18	0.15	2.34	0.31	0.38	0.92	0.74
	85年9月	1.76	2.00 0.86	<u>4.40</u> 0.71	1.50 0.54	0.90 0.70	0.82	2.30 1.03	1.93 0.89
	85年10月	0.61	0.30	0.71	0.46	0.61	1.05	1.08	0.72
	85年11月	0.60	0.57	0.57	0.67	1.49	0.60	0.62	0.73
	85年12月	0.97	0.49	1.07	0.63	1.27	0.40	1.70	0.93
	86年1月	0.40	0.30	0.93	0.55	0.37	0.48	0.49	0.50
	86年2月	0.24	0.60	0.80	0.47	0.90	0.41	0.42	0.55
	86年3月	0.38	0.35	0.35	2.53	0.28	0.72	0.28	0.70
	86年4月 86年5月	0.43	0.20	0.37	0.15	0.35 0.13	0.45 0.20	0.37	0.33
	86年6月	0.65	0.37	0.77	0.37	0.13	0.39	0.64	0.47
	86年7月	0.54	1.20	0.66	0.83	0.29	0.41	0.40	0.62
	86年8月	0.30	0.48	0.65	0.65	0.53	0.36	0.84	0.54
	86年9月	0.71	0.65	0.55	0.18	0.65	0.43	0.51	0.52
	86年10月	0.76	0.36	0.37	0.34	0.23	0.17	0.76	0.43
	86年11月	0.27	0.18	0.23	0.27	0.20	0.22	0.27	0.23
	86年12月	0.50	0.38	0.41	0.54	0.33	0.47	0.49	0.45
	87年1月	0.30	0.26	0.34	0.33	0.28	0.26	0.30	0.30
	87年2月 87年3月	0.92	0.47	0.62	0.33	0.30 0.53	0.29	0.80 0.30	0.53 0.35
	87年3月	0.50	0.42	0.53	0.46	0.35	0.34	0.50	0.50
	87年5月	0.77	0.51	0.51	0.53	0.45	0.34	0.64	0.54
	87年6月	0.82	0.23	0.48	0.20	0.41	0.38	0.38	0.41
	87年7月	0.59	0.53	0.56	0.64	0.39	0.62	0.67	0.57
	87年8月	0.23	0.37	0.43	1.30	0.61	0.35	0.35	0.52
	87年9月	0.53	0.31	0.58	0.34	0.54	0.35	0.53	0.45
	87年10月	0.90 0.41	0.41	0.72	0.35	0.36 0.25	0.50	0.32 0.34	0.51
	87年11月 87年12月	0.41	0.30	0.45	0.22	0.23	0.33	0.25	0.35 0.36
	88年1月	0.58	0.43	0.48	0.90	0.61	0.69	0.34	0.57
	88年2月	0.64	0.56	0.48	0.54	0.01	0.09	0.68	0.47
	88年3月	0.52	0.36	0.60	0.32	0.43	0.41	0.48	0.45
	88年4月	0.75	0.29	0.45	0.43	0.40	0.53	0.57	0.49
	88年5月	0.60	0.40	0.46	0.26	0.40	0.30	0.47	0.41
	88年6月	0.88	0.30	0.46	0.30	0.29	0.62	0.29	0.45
	88年7月	0.57	0.37	0.48	0.35	0.47	0.48	0.47	0.45
	88年8月	0.46	0.26	0.34	0.39	0.29	0.54	0.37	0.38
友沺	88年9月 站平均值	0.39	0.35	0.52	<u>し</u>	0.38	0.57	0.38	0.43
台思	19年7月日	0.73	0.57	0.64	0.78	0.51	0.48	0.56	0.65

註: (1)空氣品質標準未對非甲烷碳氫化合物訂定限值

^{(2)&}quot;*"表示本監測工作空氣品質歷次監測結果之最高值

^{(3)&}quot;□"表受地震影響,電源中斷

表3.1-10 核四施工環境監測歷次噪音監測結果統計表

單位: dB(A)

単位:dB(A 測站名稱:台2省道與102甲縣道交叉口(第三類管制區內緊鄰8公尺(含)以上道路)											
					四四系列の L晚:						
環境音量標準監測時間	L早: 非假日	/3(/3) 假日	非假日	76(75) 假日	非假日	/3(/3) 假日	非假日	73(70) 假日			
82年09月	75.3 *	1成口 73.8	75.4	1成口 75.3	76.2 *	1成口 74.1	72.8	71.2			
82年10月	73.8	74.0	76.0	76.5 *	73.3	72.1	71.3	70.8			
82年10月	73.7	73.7	77.0 *	75.6	75.4 *	73.8	72.3	70.8			
83年02月	73.1	76.2 *	76.6 *	74.8	74.5	75.7 *	72.3	71.7			
83年04月	73.5	73.6	78.3 *	75.5	79.2 *	71.2	77.4 *	72.0			
83年06月	69.9	68.6	70.5	69.2	68.2	66.7	66.3	66.2			
83年09月	74.8	74.4	77.1 *	75.4	75.4 *	72.4	72.3	71.4			
83年10月	74.0	74.1	76.2 *	79.6 *	75.2 *	72.2	71.8	72.2			
83年12月	75.4 *	75.9 *	78.2 *	76.7 *	75.3 *	73.2	73.2 *	73.3 *			
84年01月	74.8	75.5 *	76.7 *	76.7 *	76.3 *	74.4	75.7 *	72.6			
84年03月	76.1 *	76.0 *	77.6 *	76.8 *	74.7	73.9	73.8 *	73.8 *			
84年05月	76.2 *	75.5 *	76.9 *	82.8 *	74.5	74.5	73.1 *	72.0			
84年08月	78.3 *	76.5 *	78.4 *	76.8 *	76.0 *	74.7	75.8 *	74.2 *			
84年10月	78.5 *	76.5 *	79.3 *	78.6 *	76.2 *	74.4	74.8 *	73.5 *			
84年12月	78.6 *	78.3 *	79.7 *	78.5 *	77.3 *	78.0 *	76.9 *	76.2 *			
85年01月	75.0	74.8	76.6 *	75.4	73.0	73.7	72.8	72.9			
85年04月	80.0 *	80.0 *	80.0 *	79.9 *	78.9 *	78.3 *	78.4 *	78.3 *			
85年05月	76.9 *	75.4 *	79.1 *	75.8	73.7	72.5	73.4 *	73.0			
85年08月	74.3	71.6	74.3	73.8	74.7	73.1	70.4	69.1			
85年10月	76.7 *	75.7 *	77.2 *	75.3	75.2 *	73.6	73.6 *	72.7			
85年12月	76.6 *	76.1 *	77.2 *	76.6 *	76.1 *	74.3	73.9 *	73.0			
86年02月	82.0 *	80.4 *	82.2 *	80.2 *	79.0 *	78.7 *	83.3 *	78.4 *			
86年04月	78.4 *	75.8 *	78.2 *	76.1 *	74.3	73.8	74.2 *	73.3 *			
86年05月	79.0 *	77.6 *	77.9 *	76.6 *	74.0	73.2	75.4 *	74.9 *			
86年08月	75.5 *	72.3	74.0	72.5	72.1	71.2	71.9	70.0			
86年10月	72.4	73.3	71.9	72.9	67.1	68.4	69.4	69.8			
86年11月	74.6	73.1	74.1	73.7	71.1	71.2	72.6	70.9			
87年02月	74.6	67.1	76.9 *	69.2	77.7 *	68.4	72.7	70.1			
87年04月	69.5	69.1	74.4	67.1	66.0	71.1	73.8 *				
87年06月	74.1	69.7	75.3	75.1	73.1	73.2	74.7 *	74.8 *			
87年08月	75.2 *	72.1	81.6 *	76.0	76.4 *	76.1 *	74.7 *	73.4 *			
87年09月	81.0 *	75.7 *	79.1 *	80.6 *	80.2 *	78.5 *	79.2 *	76.9 *			
87年12月	74.2	73.9	77.1 *	77.5 *	77.6 *	82.2 *	78.9 *				
88年01月	74.8	73.5	75.1	78.9 *	74.5	76.3 *	75.6 *	76.9 *			
88年04月	77.4 *	78.3 * 74.3	80.2 * 72.5	79.5 *	78.9 *	79.3 *	78.7 * 71.2	79.4 *			
88年05月	71.7 71.3	72.4	72.6	74.0	71.3	72.4 72.0		72.0			
88年06月	72.5	72.4	73.9	73.5 74.3	71.1 72.3	73.4	69.7 69.0	71.9 72.8			
88年08月	68.4	70.6	70.7	71.4	68.9	68.9	68.4	70.4			
88年09月	73.5	70.0	74.1	74.6	71.8	72.2	75.2 *	70.4			
歴次平均	75.6 *	74.5	76.9 *		74.8	73.9	74.1 *				
進入下均	13.0	17.5	10.3	70.0	77.0	13.7	/4.1	13.1			

註:1.L早: 5:00 - 7:00, L日:7:00 - 20:00

L晚: 20:00 -22:00, L夜: 82年12月以前22:00 - 5:00;83年1月以後0:00 - 05:00及22:00 - 24:00

2. "*" 表示超過法規標準值,以新公告之"道路邊第三類8公尺(含)以上環境音量標準"為比較依據。

表3.1-10 核四施工環境監測歷次噪音監測結果統計表(續一)

單位:dB(A)

測站名稱:	鹽寮海濱公	園(第二	類管制區內	7緊鄰8公月	マ(含)以	(上道路)		
環境音量標準	L 早:	70(66)	L日:	74(69)	L 晚:	70(66)	L 夜:	67(62)
監測時間	非假日	假日	非假日	假日	非假日	假日	非假日	假日
82年09月	80.3 *	78.8 *	80.0 *	77.6 *	77.1 *	75.5 *	76.6 *	75.7 *
82年10月	79.2 *	78.1 *	78.8 *	77.1 *	76.2 *	74.2 *	75.3 *	74.7 *
82年12月	77.4 *	76.6 *	78.1 *	76.8 *	76.5 *	73.4 *	74.6 *	73.0 *
83年02月	79.7 *	79.8 *	80.4 *	80.5 *	78.1 *	78.1 *	77.5 *	77.9 *
83年04月	76.0 *	75.8 *	76.1 *	74.5 *	73.5 *	73.1 *	72.8 *	72.9 *
83年06月	80.5 *	79.7 *	79.4 *	77.7 *	76.7 *	76.2 *	76.5 *	76.0 *
83年09月	80.6 *	79.2 *	80.4 *	78.6 *	77.4 *	76.6 *	77.0 *	76.2 *
83年10月	77.1 *	76.6 *	77.3 *	76.8 *	74.9 *	74.4 *	73.9 *	74.5 *
83年12月	77.9 *	77.2 *	81.0 *	78.4 *	75.5 *	76.1 *	75.4 *	75.5 *
84年01月	78.4 *	77.4 *	80.0 *	77.7 *	77.9 *	75.4 *	76.5 *	74.9 *
84年03月	77.4 *	78.1 *	78.9 *	78.1 *	77.1 *	75.6 *	75.0 *	75.3 *
84年05月	78.3 *	76.8 *	78.5 *	73.5	76.1 *	73.1 *	75.6 *	74.8 *
84年08月	67.3	75.6 *	71.5	74.7 *	73.5 *	72.6 *	69.9 *	73.6 *
84年10月	75.5 *	74.8 *	75.5 *	75.0 *	73.5 *	72.8 *	74.6 *	72.2 *
84年12月	77.6 *	76.1 *	77.4 *	75.8 *	74.5 *	74.3 *	75.2 *	74.4 *
85年01月	76.0 *	76.5 *	76.7 *	75.5 *	73.0 *	74.6 *	73.9 *	74.3 *
85年04月	77.8 *	78.7 *	77.1 *	78.8 *	76.9 *	76.4 *	76.3 *	76.3 *
85年05月	76.7 *	76.2 *	76.0 *	74.6 *	74.8 *	71.0 *	74.4 *	73.1 *
85年08月	77.1 *	76.1 *	76.8 *	75.8 *	74.2 *	74.5 *	73.9 *	73.6 *
85年10月	77.9 *	76.0 *	77.9 *	75.8 *	75.8 *	75.8 *	75.5 *	75.5 *
85年12月	76.8 *	76.6 *	77.4 *	76.4 *	76.9 *	74.3 *	74.5 *	73.2 *
86年02月	70.8 *	69.3	71.8	70.3	69.1	69.0	68.7 *	67.9 *
86年04月	75.3 *	74.3 *	75.7 *	73.4	73.0 *	69.5	72.4 *	71.9 *
86年05月	78.9 *	78.2 *	78.0 *	77.1 *	74.8 *	74.4 *	76.9 *	75.7 *
86年08月	75.8 *	73.3 *	75.5 *	73.8	72.4 *	71.9 *	72.1 *	71.3 *
86年10月	75.3 *	74.7 *	76.2 *	75.3 *	72.9 *	71.3 *	71.7 *	71.0 *
86年11月	71.7 *	60.2	70.6	69.4	67.4	67.3	79.0 *	64.6
87年02月	78.2 *	79.2 *	77.6 *	76.9 *	78.4 *	74.0 *	75.2 *	75.7 *
87年04月	74.4 *	73.4 *	76.8 *	72.3	78.0 *	69.9	74.9 *	70.1 *
87年06月	60.6	67.0	70.1	70.2	63.8	69.1	64.0	70.5 *
87年08月	75.2 *	74.8 *	75.3 *	75.2 *	76.5 *	76.6 *	75.1 *	74.9 *
87年09月	75.4 *	70.8 *	70.8	74.7 *	72.1 *	73.6 *	71.8 *	75.4 *
87年12月	70.0	65.7	68.9	67.6	66.8	67.9	66.8	68.3 *
88年01月	65.6	65.4	68.6	67.3	65.4	64.6	65.3	68.9 *
88年04月	74.8 *	78.3 *	80.2 *	79.5 *	78.9 *	79.3 *	78.7 *	79.4 *
88年05月	71.7	74.3 *	72.5	74.0	71.3 *	72.4 *	71.2 *	72.0 *
88年06月	68.1	67.8	71.1	69.7	69.6	68.6	68.7 *	67.3 *
88年07月	68.2	68.8	72.7	70.0	71.0 *	66.2	69.8 *	68.2 *
88年08月	66.9	68.2 *	69.3	69.8 *	67.5	68.5 *	66.3	66.6 *
88年09月	63.1	69.5	67.8	67.2	68.3	65.4	67.7 *	64.4
歴次平均	75.5 *	75.0 *	76.2 *	75.2 *	74.2 *	73.3 *	73.9 *	73.5 *

註:1.L早: 5:00 - 7:00, L日:7:00 - 20:00

^{2. &}quot;*" 表示超過法規標準值,以新公告之"道路邊第二類8公尺(含)以上環境音量標準"為比較依據。

表3.1-10 核四施工環境監測歷次噪音監測結果統計表(續二)

單位: dB(A)

測站名稱:	測站名稱:福隆街上(第二類管制區內緊鄰8公尺(含)以上道路)												
環境音量標準	L早:	70(66)	L日:	74(69)	L 晚:	70(66)	L 夜:	67(62)					
監測時間	非假日	假日	非假日	假日	非假日	假日	非假日	假日					
84年08月	74.4 *	72.8 *	73.7	72.2	71.6 *	69.9	72.2 *	70.0 *					
84年10月	76.6 *	75.3 *	76.1 *	74.8 *	73.3 *	71.8 *	73.8 *	72.3 *					
84年12月	76.8 *	75.6 *	76.8 *	75.5 *	74.4 *	73.8 *	75.0 *	74.0 *					
85年01月	76.2 *	75.8 *	76.7 *	75.4 *	74.0 *	73.6 *	74.2 *	74.2 *					
85年04月	77.3 *	75.2 *	77.5 *	73.0	75.4 *	73.3 *	75.1 *	74.0 *					
85年05月	78.3 *	77.6 *	77.6 *	76.3 *	75.4 *	72.7 *	76.0 *	75.0 *					
85年08月	76.3 *	74.8 *	76.2 *	75.1 *	73.1 *	72.2 *	72.8 *	72.3 *					
85年10月	77.0 *	76.4 *	77.8 *	76.4 *	74.9 *	74.0 *	74.5 *	74.5 *					
85年12月	75.1 *	75.1 *	75.7 *	74.4 *	75.2 *	72.4 *	73.2 *	71.8 *					
86年02月	76.8 *	75.5 *	77.2 *	76.0 *	75.1 *	75.0 *	75.1 *	74.6 *					
86年04月	77.3 *	76.5 *	77.6 *	76.1 *	75.1 *	74.8 *	74.4 *	74.0 *					
86年05月	77.6 *	75.8 *	76.2 *	74.4 *	72.8 *	71.7 *	74.4 *	73.8 *					
86年08月	76.8 *	74.5 *	76.8 *	75.0 *	74.4 *	73.6 *	74.1 *	76.7 *					
86年10月	76.7 *	79.7 *	76.8 *	79.0 *	74.2 *	73.5 *	74.2 *	76.1 *					
86年11月	75.7 *	74.6 *	75.6 *	74.9 *	72.3 *	72.5 *	73.0 *	72.0 *					
87年02月	71.2 *	66.6	71.5	67.3	66.3	62.4	67.9 *	65.3					
87年04月	76.0 *	68.7	76.8 *	71.5	78.8 *	72.0 *	75.3 *	71.6 *					
87年06月	76.4 *	70.5 *	67.2	67.8	67.4	66.4	67.0	68.3 *					
87年08月	73.3 *	75.5 *	75.1 *	74.1 *	73.9 *	73.2 *	73.3 *	74.3 *					
87年09月	72.9 *	75.6 *	74.1 *	75.8 *	73.2 *	76.6 *	72.4 *	73.3 *					
87年12月	67.5	68.6	72.7	73.5	68.5	70.6 *	68.0 *	68.3 *					
88年01月	65.7	68.0	69.3	70.7	67.3	69.7	67.1 *	67.3 *					
88年04月	70.0	67.9	70.7	70.3	69.9	70.7 *	70.1 *	67.2 *					
88年05月	68.6	67.3	72.8	71.1	70.9 *	69.9	69.1 *	67.7 *					
88年06月	69.1	67.3	72.7	70.6	69.9	69.7	68.5 *	67.5 *					
88 年 07月	70.3 *	67.4	72.9	70.6	69.8	70.2 *	69.0 *	68.0 *					
88年08月	67.6	67.1 *	69.9	70.0 *	68.3	68.4	66.5	66.5 *					
88年09月	6.4	68.6	71.9	74.0	69.3	71.6 *	69.4 *	69.4 *					
歷次平均	74.6 *	73.5 *	74.9 *	73.8	72.8 *	71.9 *	72.6 *	72.0 *					

註:1.L早: 5:00 - 7:00, L日:7:00 - 20:00

^{2. &}quot;*" 表示超過法規標準值,以新公告之"道路邊第二類8公尺(含)以上環境音量標準"為比較依據。

^{3.}本測站自84年8月起開始進行監測。

表3.1-10 核四施工環境監測歷次噪音監測結果統計表(續三)

單位:dB(A)

測站名稱:102縣道之新社橋(第二類管制區內緊鄰8公尺(含)以上道路)											
環境音量標準	L早:	70(66)	L 日:	74(69)	L 晚:	70(66)	L 夜:	67(62)			
監測時間	非假日	假日	非假日	假日	非假日	假日	非假日	假日			
84年08月	51.5	59.6	48.9	66.8	48.2	62.0	51.2	62.8			
84年10月	60.6	62.1	63.9	67.0	57.1	59.8	59.8	57.3			
84年12月	63.8	58.5	66.9	67.5	58.5	58.7	56.7	56.2			
85年01月	64.8	56.9	65.2	66.0	59.0	56.5	53.5	56.5			
85年04月	66.7	63.7	67.2	71.2	64.2	68.5	59.9	61.0			
85年05月	66.2	62.1	66.1	68.1	58.3	59.6	58.6	60.7			
85年08月	58.4	60.1	68.9	61.8	55.2	57.5	52.7	51.7			
85年10月	56.9	58.2	63.8	67.8	56.1	64.3	55.1	59.2			
85年12月	57.2	56.9	60.5	64.1	52.9	53.2	58.6	60.1			
86年02月	58.6	57.4	62.6	65.2	57.8	56.1	55.7	58.3			
86年04月	60.2	61.9	63.7	64.9	57.3	56.3	62.3	57.1			
86年05月	60.4	59.2	62.9	64.7	55.3	57.0	60.1	60.9			
86年08月	58.9	53.7	62.1	58.4	60.9	63.1	56.8	60.6			
86年10月	57.9	58.0	59.2	61.1	59.4	55.3	57.0	56.4			
86年11月	46.3	45.7	55.4	51.8	63.3	50.7	48.5	48.3			
87年02月	53.9	52.1	56.9	58.8	51.7	54.2	57.0	51.6			
87年04月	66.7	72.2 *	74.8 *	73.5	72.5 *	71.2 *	70.4 *	78.2 *			
87年06月	60.6	67.3	65.0	68.4	62.4	67.0	64.6	63.7			
87年08月	61.7	61.0	64.0	63.7	59.8	62.3	60.7	60.6			
87年09月	61.4	58.9	65.6	66.3	63.0	65.6	62.1	61.9			
87 年 12 月	64.0	67.5	64.5	65.5	66.8	63.9	62.7	65.6			
88年01月	56.5	56.0	58.1	58.1	56.9	53.9	56.8	56.8			
88年04月	62.1	59.9	62.4	65.2	58.5	60.2	57.2	56.8			
88年05月	54.3	55.6	56.9	58.2	53.2	53.1	53.9	53.9			
88 年 06月	54.8	58.2	60.1	60.4	56.3	57.3	56.9	57.2			
88 年 07月	53.4	63.1	61.9	63.4	57.3	62.1	59.9	60.9			
88 年 08月	58.6	54.3	64.1	60.5	61.1	58.1	59.8	58.7			
88 年 09月	60.8	59.8	63.1	62.8	60.9	61.0	59.3	60.1			
歷次平均	59.6	59.4	62.7	64.3	58.7	59.6	58.0	59.0			

註:1.L早: 5:00 - 7:00, L日:7:00 - 20:00

^{2. &}quot;*" 表示超過法規標準值,以新公告之"道路邊第二類8公尺(含)以上環境音量標準"為比較依據。

^{3.}本測站自84年8月起開始進行監測。

表3.1-10 核四施工環境監測歷次噪音監測結果統計表(續四)

單位: dB(A)

油肿夕秤。	測站名稱:過港部落(一般地區第二類管制區)												
	D.在印洛(L早		5-双官巾 L日		L 晚	• 55	L夜	• 50					
環境音量標準													
監測時間	非假日 65.1 *	假日 57.2.*	非假日	假日	非假日	假日	非假日	<u>假日</u> 53.1 *					
84年08月	05.1	31.2	65.2 *	56.9	61.5 *	51.9	67.2 *	33.1					
84年10月	49.6	51.3	50.7	54.5	48.0	59.5 *	52.0 *	53.9 *					
84年12月	47.7	51.7	59.7	50.1	46.6	46.5	50.0	50.6 *					
85年01月	46.9	50.6	49.2	55.9	47.7	50.1	49.4	49.9					
85年04月	54.7	56.3 *	55.6	53.6	53.3	51.7	53.0 *	54.3 *					
85年05月	50.7	50.5	49.4	55.0	43.0	41.1	47.1	50.0					
85年08月	48.5	52.5	53.9	56.7	48.4	46.9	53.0 *	49.7					
85年10月	52.0	56.9 *	57.0	58.1	58.1 *	63.8 *	58.4 *	62.3 *					
85年12月	59.4 *	54.1	57.2	62.0 *	54.5	56.7 *	53.2 *	57.3 *					
86年02月	53.9	52.6	50.4	54.3	48.7	51.9	51.9 *	54.8 *					
86年04月	53.7	57.3 *	59.1	54.4	51.8	43.7	50.1 *	48.2					
86年05月	49.3	51.2	55.7	52.9	50.0	50.1	52.0 *	52.6 *					
86年08月	41.3	54.3	50.6	62.1 *	52.4	55.6 *	49.5	54.3 *					
86年10月	46.6	51.7	54.8	57.1	53.2	54.2	52.0 *	52.2 *					
86年11月	54.6	51.4	63.8 *	56.2	57.3 *	57.9 *	53.4 *	54.5 *					
87年02月	50.4	51.4	52.1	58.0	52.5	54.5	58.5 *	53.8 *					
87年04月	47.9	52.5	54.1	57.7	49.5	53.8	49.2	52.9 *					
87年06月	57.4 *	49.2	68.2 *	65.9 *	66.6 *	58.6 *	64.5 *	56.0 *					
87年08月	60.7 *	60.5 *	62.7 *	64.2 *	59.0 *	59.7 *	58.7 *	62.3 *					
87年09月	62.4 *	65.9 *	64.8 *	69.0 *	60.2 *	60.2 *	59.7 *	66.2 *					
87年12月	58.4 *	60.1 *	60.0	62.3 *	57.4 *	60.0 *	57.9 *	60.0 *					
88年01月	57.1 *	62.2 *	60.1 *	63.2 *	58.4 *	60.0 *	58.5 *	59.9 *					
88年04月	61.2 *	60.4 *	62.9 *	64.5 *	60.5 *	62.2 *	61.5 *	60.6 *					
88年05月	58.4 *	55.4 *	60.2 *	59.7	57.2 *	56.8 *	55.3 *	55.0 *					
88 年 06月	56.2 *	56.0 *	58.0	60.8 *	54.6	57.1 *	54.8 *	55.8 *					
88 年 07月	58.4 *	60.1 *	60.6 *	64.2 *	57.0 *	60.7 *	57.7 *	59.7 *					
88年08月	48.7	50.4	50.5	57.1	44.7	50.6	48.6	50.3 *					
88 年 09月	58.3 *	59.2 *	60.4 *	61.8 *	57.8 *	58.5 *	56.4 *	56.0 *					
歷次平均	53.7	54.9	57.4	58.5	54.0	54.5	54.8 *	55.2 *					

註:1.L早: 5:00 - 7:00, L日:7:00 - 20:00

^{2. &}quot;*" 表示超過法規標準值,以新公告之"一般地區第二類管制區環境音量標準"為比較依據。

^{3.}本測站自84年8月起開始進行監測。

表3.1-11 核四施工環境監測歷次振動 $L_{10}(24$ 小時)監測結果統計表

單位:dB

_									単位	· ub
	台2省道	道與 102					102縣道	之新社		
測站名稱	甲縣道	<u>交叉</u> 口	鹽寮海	濱公園	福隆	<u> 街上</u>	r t		過港	部落
監測時間	非假日	假日	非假日	假日	非假日	假日	非假日	假日	非假日	假日
82年09月	30.1	30.0	53.1	49.0	-	-	-	-	-	-
82年10月	30.0	30.0	52.8	48.7	-	-	-	-	-	-
82年12月	30.0	30.0	53.9	50.5	-	-	-	-	-	-
83年02月	30.0	30.0	53.7	54.1	-	ı	-	1	-	-
83年04月	30.5	30.1	52.6	48.4	-	-	-	-	-	-
83年06月	30.2	30.0	51.7	47.3	-	ı	-	1	-	-
83年09月	30.1	30.0	52.3	48.1	-	-	-	-	-	-
83年10月	33.2	33.9	51.8	48.3	-	-	-	-	-	-
83年12月	31.2	30.1	50.1	50.2	-	-	-	-	-	-
84年01月	32.8	31.8	48.1	46.2	-	-	-	-	-	-
84年03月	39.9	38.5	48.8	47.4	-	-	-	-	-	-
84年05月	30.2	30.0	48.2	43.0	_	_	_	_	_	_
84年08月	31.2	30.0	49.2	36.7	45.8	51.1	30.0	30.4	36.0	33.2
84年10月	30.3	30.0	45.2	42.2	53.0	48.8	30.0	30.3	30.0	30.9
84年12月	31.0	30.8	46.6	43.5	45.6	44.7	30.0	31.8	30.0	30.0
85年01月	37.1	37.2	50.2	44.4	52.6	50.4	30.0	30.0	30.0	30.0
85年04月	33.3	30.4	47.9	46.1	52.4	41.3	60.7	37.9	30.0	30.0
85年05月	32.6	31.8	47.8	45.6	52.0	49.7	30.0	31.2	30.0	31.6
85年08月	36.0	36.7	47.4	45.3	52.3	50.1	31.5	32.3	30.3	31.5
85年10月	31.6	30.2	42.5	44.3	51.3	48.9	30.6	30.8	30.0	30.0
85年12月	31.7	30.7	42.7	41.2	52.2	50.0	30.3	32.1	30.0	30.0
86年02月	38.1	35.9	48.0	45.5	52.2	50.8	30.0	31.0	30.0	30.0
86年04月	37.2	33.2	41.0	41.8	51.6	46.6	30.1	31.3	30.0	30.0
86年05月	39.7	37.8	39.4	36.2	52.1	49.9	31.2	32.0	30.5	30.6
86年08月	44.5	42.1	30.3	30.0	47.4	44.7	30.0	30.0	30.3	30.0
86年10月	43.7	41.5	30.8	30.0	47.7	45.6	32.2	32.7	31.2	30.1
86年11月	39.5	37.3	38.4	37.0	44.7	43.1	30.5	30.3	30.1	30.1
87年02月	41.1	36.3	32.6	31.8	48.1	34.9	32.5	36.3	30.0	30.0
87年04月	36.4	36.3	30.0	34.2	49.2	40.5	30.4	30.1	30.1	30.4
87年06月	39.3	37.5	30.0	30.0	30.8	30.7	30.6	30.8	30.3	31.2
87年08月	39.0	41.0	35.3	35.2	46.8	46.5	30.2	30.2	30.2	30.7
87年09月	38.3	40.8	38.0	37.6	38.0	40.3	31.0	31.4	30.2	31.1
87年12月	40.3	41.4	36.5	36.3	41.7	41.7	31.5	30.4	30.0	30.0
88年01月	37.4	37.0	32.7	30.1	36.2	38.0	30.0	30.0	30.0	30.6
88年04月	42.4	40.9	32.3	30.3	42.9	45.2	30.0	30.2	30.0	30.1
88年05月	35.8	39.2	36.7	37.3	43.7	40.1	37.3	37.4	30.6	31.5
88年06月	36.4	37.1	34.0	33.4	41.3	40.0	32.9	32.9	31.1	31.0
88年07月	38.5	38.3	33.2	31.8	40.8	38.9	32.3	32.3	30.5	31.3
88年08月	34.8	36.2	32.7	32.9	42.0	42.2	32.4	31.0	36.0	30.4
88年09月	36.5	35.4	33.3	33.2	43.5	41.9	33.7	33.8	30.3	30.9
歷次平均	35.2	34.5	43.6	41.5	47.1	44.7	32.1	31.7	30.4	30.6

表3.1-12 核四施工環境監測歷次交通流量監測結果比較表

單位: P.C.U./日

測站名稱	台2省道縣道3		鹽寮海	濱公園	福隆	街上	102縣道		過港	部落
監測時間	非假日	假日	非假日	假日	非假日	假日	非假日	假日	非假日	假日
82年09月	26775	26514	24513	24481	-	-	-	-	-	-
82年10月	22617	28495	20276	26863	-	-	-	-	-	-
82年12月	24507	26710	21179	24206	-	-	-	-	-	-
83年02月	27077	27037	23830	25185	-	-	-	-	-	-
83年04月	26033	35202	25204	34509	-	-	-	-	-	-
83年06月	23498	23861	22074	24552	-	-	-	-	-	-
83年09月	18615	24392	23296	25820	-	-	-	-	-	-
83年10月	22468	25958	20195	26456	-	-	-	-	-	-
83年12月	18609	21246	21875	21719	-	-	-	-	-	-
84年01月	23140	21807	22308	21548	-	-	-	-	-	-
84年03月	21881	26458	20095	24177	-	-	-	-	-	-
84年05月	27787	26338	24702	27226	-	-	-	-	-	-
84年08月	22967	30800	19919	25405	21988	26005	1089	1537	32	306
84年10月	22790	28296	21115	19973	23148	24196	585	1029	21	144
84年12月	24478	23619	21478	22963	22841	23466	142	1087	17	49
85年01月	22997	21905	17521	18485	19793	18796	796	1020	39	47
85年04月	29555	31884	17847	27906	21382	18940	2065	2027	24	34
85年05月	21957	26183	23522	24132	17988	18589	831	2239	38	162
85年08月	24392	35695	22054	32047	19242	29072	1478	2329	89	130
85年10月	20140	25143	19753	23465	20044	23919	2232	3098	88	103
85年12月	16371	24021	15376	20560	14112	20970	699	944	55	62
86年02月	20441	20739	14191	15557	13805	15924	1003	1026	20	88
86年04月	14131	22519	13015	19753	13939	23491	1240	4394	58	80
86年05月	23501	29028	25199	26055	23546	25910	3508	3896	70	121
86年08月	23534.5	23553	21277	21884	22312	22673.5	1473	1795	18	26
86年10月	18534.5	18703	17269.5	16959	17542	17666	1238.5	1486	131	119
86年11月	12464.5	16494	12124	16040	12435	16237	-	-	-	-
86年12月	-	-	-	-	-	-	504	679.5	27.5	30
87年02月	20643.5				17050		804	1524	23.5	35.5
87年04月	17167	19642	15758.5	18337	16708.5	20117	4313	3127.5	69	117
87年06月	15838	22048	14757.5	19830.5	15437.5	21109	1053.5	1279	110.5	304
87年08月	13088	19398	10839	16660	12033	18221	1094	1933	69	241
87年09月	16307.5	23639	14645.5	20825	15435	22055	1037	1853	114.5	306.5
87年12月	18233.5	23876	17449	22928.5	18088.5	23534	1821	1993	68.5	94
88年01月	20519	25393	19832	23382	19193	22773.5	1656	2424.5	75	175.5
88年04月	22157.5	24768.5	18408.5	18542.5	22135.5		1281	2422.5	111.5	152.5
88年05月	18704.5	23918	16821	23466.5	17331	23557.5	944	970.5	145.5	253
88年06月	14628	19103	13432	17351	13112	18219	1110	1588	186	297
88年07月	15093	18533	14051	15307	11860	16194	948	2222	285	265
88年08月	14903	18149	13888	17176	15030	18365	1341	1237	92	319
88年09月	13614	21943	13351	20726	13483	21773	1493	1770	167	250
歷次平均	21220	24930	19422	22880	18230	21629	1370.3	1921.4	63.104	132.5

表3.1-13 核四施工環境監測歷年與本季平均地下水水位標高調查結果比較表

監測	則井編號	1	2	3	4	5	6	7	8	9	10	11	12
監測	則井名稱	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	1面標高	11.62	8.56	5.93	5.41	15.47	16.71	18.09	42.30	43.56	55.25	19.49	43.15
井		12.12	9.07	6.43	5.93	15.59	17.21	18.58	42.89	44.00	55.77	19.96	43.63
本	88年7月平均	9.92	5.34	4.26	2.50	2.87	13.70	2.06	28.17	31.85	43.79	12.22	39.00
	88年8月平均	9.65	5.28	3.93	2.15	2.34	13.59	1.24	26.95	31.50	42.75	12.17	38.38
季	88年9月平均	9.39	5.01	4.39	1.96	1.86	13.41	1.00	26.03	31.08	41.31	12.16	39.39
	83年7月平均	9.41	5.05	2.82	2.72	2.34	13.75	0.88	28.47	30.87	38.15	12.00	38.01
	83年8月平均	9.85	5.65	3.62	2.84	1.99	13.80	0.85	28.67	30.84	38.10	10.20	37.97
歷	83年9月平均	10.82	6.24	4.35	3.07	2.02	14.18	0.96	29.92	32.37	40.30	11.60	39.29
	84年7月平均	9.69	5.20	2.88	2.56	2.06	13.58	0.73	28.55	30.66	38.25	11.68	38.16
	84年8月平均	9.44	5.27	2.29	2.63	1.65	13.69	0.56	28.04	30.84	40.29	11.84	37.86
	84年9月平均	10.60	6.32	3.53	2.90	1.49	14.15	0.60	28.49	32.30	43.16	11.89	38.47
年	85年7月平均	9.39	5.12	2.12	2.62	2.33	13.51	0.71	27.95	30.83	41.89	11.74	37.92
	85年8月平均	10.42	5.75	3.53	3.07	2.13	14.03	0.91	28.64	30.84	43.35	11.77	38.37
	85年9月平均	10.04	5.64	3.56	3.13	2.02	14.03	0.82	28.98	31.58	44.10	11.44	38.36
	86年7月平均	9.86	5.53	3.47	2.90	2.70	13.72	1.02	29.21	31.79	43.48	12.44	38.41
	86年8月平均	9.89	5.70	3.13	2.96	2.97	13.90	0.95	29.22	32.41	45.09	12.29	38.57
	86年9月平均	10.45	6.01	3.80	3.02	2.43	13.85	1.11	30.20	32.26	44.71	12.41	38.89
	87年7月平均	9.21	4.93	2.20	2.74	2.70	13.37	0.97	25.17	31.40	40.08	11.95	37.99
	87年8月平均	9.15	4.46	2.03	2.42	1.93	13.37	0.70	23.52	30.79	38.60	11.69	37.70
	87年9月平均	10.61	5.96	4.52	3.05	1.98	14.33	0.93	25.82	32.03	42.37	11.90	39.07
核四環評7	7月平均	9.72	5.90	3.57	3.07	2.62	12.72	1.39	28.57	30.14	38.54	15.20	38.14
核四環評8	3月平均	10.01	6.05	3.74	3.37	2.40	13.36	1.30	27.24	30.56	38.28	14.74	38.44
核四環評S	月平均	10.52	6.59	3.71	3.59	2.58	13.69	1.45	27.73	29.99	38.13	14.95	38.37

註:核凹環評報告平均值係整理目「核能凹廠第一、二號機發電計畫環境影響評估報告」,資料統計時間目76年10月至 78年11月;83年至88年平均系整理自本監測計畫歷次測值

表3.1-14 核四施工環境監測地下水水質歷年與本季pH監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
		88年7月	7.01	6.17	5.97	7.10	7.75	5.79	7.69	6.59	5.89	5.32	8.14	6.31
	本 季	88年8月	7.00	6.30	6.02	7.24	7.90	5.70	7.76	6.68	5.50	5.60	8.50	6.40
	,	88年9月	6.97	6.25	7.01	7.28	7.87	6.05	7.74	6.59	6.26	5.86	8.50	6.44
		83年7月	6.78	6.13	6.84	7.43	7.67	6.17	7.44	5.74	5.66	5.81	7.75	5.54
		83年8月	6.93	5.79	5.69	7.25	7.62	5.96	7.67	5.97	5.74	5.37	8.26	6.02
		83年9月	7.39	5.80	7.17	7.00	7.68	5.28	7.01	6.31	5.89	5.84	8.21	6.19
		84年7月	6.65	6.06	5.95	7.15	7.44	5.66	7.45	6.63	6.24	6.10	7.76	6.32
		84年8月	6.84	5.95	9.53	9.72	9.82	9.21	9.63	6.29	5.86	5.67	8.30	6.23
		84年9月	7.00	6.87	8.17	7.45	7.71	5.82	7.46	6.49	6.25	6.15	8.63	6.42
рН		85年7月	6.88	6.97	6.98	7.24	7.72	5.85	7.69	6.98	6.32	6.97	8.75	6.97
1	歷	85年8月	8.71	6.02	8.44	7.21	7.71	7.12	9.31	7.57	6.05	6.40	10.68	7.76
	_	85年9月	6.90	6.03	6.61	7.24	7.72	5.55	7.62	6.34	6.30	5.72	8.74	6.37
	年	86年7月	6.84	6.03	6.23	7.25	7.78	5.85	7.76	6.40	5.77	5.60	8.55	6.39
		86年8月	6.88	6.18	7.62	7.24	7.70	5.75	7.64	6.30	6.08	5.69	8.40	6.37
		86年9月	6.82	5.61	6.26	7.18	7.70	5.45	7.66	6.54	5.04	5.39	8.54	6.35
		87年7月	6.80	5.94	6.45	7.12	7.62	5.39	7.61	6.11	6.01	5.46	7.62	6.40
		87年8月	6.95	6.06	7.92	7.47	7.51	5.48	7.54	6.55	6.04	6.12	8.64	6.50
		87年9月	6.69	5.32	5.23	6.84	7.26	5.07	7.46	5.97	4.68	5.09	8.23	6.14
		核四環評 平均測值	6.85	6.10	7.25	7.22	7.54	6.07	7.56	6.04	6.02	6.24	8.01	6.40

註:1.核四環評平均測值係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(80年11月);83年 87年平均測值係整理本監測報告歷次測值。

表3.1-15 核四施工環境監測地下水水質歷年與本季導電度監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	本	88年7月	1456	195	198	777	287	108	1686	223	183	158	782	274
	李	88年8月	3000	218	184	775	295	110	1720	235	158	167	833	271
	4	88年9月	3500	223	501	773	293	112	1762	222	234	192	830	279
		83年7月	1382	238	415	549	328	173	1355	280	239	236	714	238
		83年8月	1274	373	336	576	348	251	1567	286	238	257	775	297
		83年9月	879	663	569	633	356	190	1607	280	230	239	700	255
		84年7月	440	241	248	681	352	157	1713	292	254	249	663	261
		84年8月	789	250	410	608	346	145	683	267	225	246	655	267
		84年9月	3250	235	482	603	301	140	459	941	800	941	586	940
導電度	歷	85年7月	2270	218	479	705	335	158	698	233	208	205	577	247
(µmho/cm)	/112	85年8月	2420	213	371	566	241	123	459	240	175	169	616	232
		85年9月	2590	268	435	719	322	152	590	266	239	196	630	277
	年	86年7月	1240	192	309	740	361	197	1880	261	157	153	644	247
		86年8月	4480	219	518	707	324	160	1880	265	232	201	635	267
		86年9月	567	114	223	700	334	150	1880	276	138	148	671	283
		87年7月	2250	190	305	728	307	127	1888	230	225	198	650	273
		87年8月	6740	212	566	739	289	133	1595	258	232	228	656	262
		87年9月	2290	98.2	159	746	285	120	1741	285	127	167	628	262
		核四環評 平均測值	308	141	427	333	260	139	757	164	157	221	701	206

註:1.核四環評平均測值係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(80年11月);83年 87年平均測值係整理本監測報告歷次測值。

表3.1-16 核四施工環境監測地下水水質歷年與本季氯鹽監測結果表

監測井水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	本	88年7月	51.4	15.0	23.9	41.8	14.6	15.7	437	30.2	21.2	29.1	23.7	20.7
	李	88年8月	132	15.6	19.9	36.5	17.8	16.8	426	27.3	24.7	28.7	43.4	20.7
	-5-	88年9月	249	17.6	35.0	33.5	18.9	17.1	468	28.1	21.9	26.9	32.2	19.9
		83年7月	96.31	25.06	28.38	47.86	23.87	25.30	345.35	15.79	18.64	18.64	25.53	18.64
		83年8月	83.30	74.94	71.46	37.36	22.74	33.87	325.76	17.17	19.26	19.26	27.61	19.95
		83年9月	57.20	74.94	57.68	44.97	21.46	35.61	21.70	16.67	19.31	19.31	25.06	18.59
		84年7月	27.88	20.28	21.89	54.38	24.89	30.42	425.83	17.30	21.40	26.50	27.00	8.80
		84年8月	63.50	20	28.5	42	25.5	31	104	16.8	20.7	27.1	23.2	19.2
		84年9月	494	19.4	29.8	43.2	21.8	32.3	81.4	14.9	19.8	27.3	23.3	18.4
氯 鹽		85年7月	217	17.7	21.5	45.3	20.7	28.6	88.7	15.8	20.4	29.6	22.7	20.5
(mg/L)	歷	85年8月	178	42.3	60.8	42.7	16.7	33.9	53.4	16.8	20.6	29.2	23.0	17.2
		85年9月	194	40.3	72.6	35.9	19.9	32.3	68.2	17.1	20.7	28.7	22.4	18.6
	年	86年7月	83.3	17.7	21.2	43.9	25.6	29.6	486.0	17.2	25.6	26.6	25.1	21.7
		86年8月	302.0	16.6	32.3	46.2	21.8	29.4	511.0	14.7	22.5	30.8	24.7	19.3
		86年9月	37.6	19.4	25.3	43.7	19.4	26.2	87.0	17.0	26.2	32.1	19.8	130.0
		87年7月	168	10.5	20.9	56.8	17.9	23.3	545	19.0	23.3	30.2	22.3	21.0
		87年8月	510	12.7	32.8	55.0	14.1	25.4	461	21.0	24.7	29.8	24.2	24.4
		87年9月	152	8.5	17.4	41.1	10.4	20.6	463	18.0	25.0	31.5	23.8	19.5
		核四環評 平均測值	29.28	18.95	52.12	37.05	19.31	19.78	166.54	18.86	20.20	25.99	27.13	20.62

註:1.核四環評平均測值係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(80年11月);83年 87年平均測值係整理 本監測報告歷次測值。

表3.1-17 核四施工環境監測地下水水質歷年與本季生化需氧量監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	+	88年7月	6.4	ND	ND	1.4	1.1	1.1	1.1	1.2	ND	1.1	1.3	ND
	本季	88年8月	7.8	ND										
	h	88年9月	17.6	ND	2.5	ND	ND	1.5	ND	ND	ND	ND	ND	ND
		83年7月	8.0	0.2	4.1	0.6	0.7	0.1	0.7	1.1	0.1	0.5	0.8	0.3
		83年8月	4.0	0.1	0.2	0.2	0.3	0.5	0.7	0.5	0.0	0.3	1.7	0.1
		83年9月	3.2	0.1	0.2	0.3	0.2	0.3	0.1	0.0	0.8	0.4	1.6	0.6
		84年7月	1.4	0.5	0.5	0.2	0.1	0.6	0.7	0.8	0.5	0.3	1.0	0.6
		84年8月	5.9	0.3	0.4	0.4	0.2	1.1	0.9	ND	ND	ND	0.4	ND
		84年9月	ND	ND	0.4	0.5	0.8	0.6	1.4	0.4	0.2	0.2	0.6	0.8
生化需氧量	-	85年7月	13.8	0.6	0.6	0.3	0.5	0.2	0.7	0.5	0.5	0.7	2.1	0.5
(mg/L)	歷	85年8月	6.8	8.0	1.2	1.0	0.4	1.2	0.9	0.4	1.4	1.7	3.2	1.3
		85年9月	11	1.7	1.4	1.5	0.7	0.7	1.4	2.8	3.3	2.8	3.4	1.3
	年	86年7月	6.0	ND	0.2	0.7	0.2	0.8	0.8	3.1	1.7	0.6	1.5	ND
		86年8月	45.0	ND	1.5	1.2	1.2	2.5	ND	2.9	2.1	1.2	2.8	2.9
		86年9月	3.7	ND	2.0	2.0	2.4	ND	1.4	1.0	ND	1.4	1.7	ND
		87年7月	24.4	1.2	3.7	ND	ND	1.0	ND	1.2	ND	ND	ND	1.6
		87年8月	46.8	ND	ND	ND	2.0	ND	1.4	1.1	ND	ND	ND	ND
		87年9月	8.2	1.3	1.1	1.0	ND	ND	ND	1.8	ND	1.4	1.4	1.0
		核四環評 平均測值	2.17	1.85	1.66	1.72	2.93	1.81	1.94	1.85	2.24	1.56	2.50	2.11

註:1.表中"ND"(Not detected)表示未檢出或低於偵測極限。

- 2.方法限值與偵測極限詳各季季報附錄 -4 -6。
- 3.核四環評平均測值係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(80年11月);83年 87年平均測值係整理本監測報告歷次測值。

表3.1-18 核四施工環境監測地下水水質歷年與本季化學需氧量監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	本	88年7月	25.2*	3.8	2.9	3.2	ND	ND	11.7	ND	ND	ND	3.5	ND
	李	88年8月	71.1	ND	ND	3.3	ND	7.7	6.8	8.4	5.6	ND	ND	4.3
	-	88年9月	175*	ND	3.9	5.8	ND	18.6	5.2	ND	ND	ND	3.2	ND
		83年7月	48*	5	28	5	6	11	4	10	3	12	9	6
		83年8月	42*	9	10	7	8	12	11	14	6	10	47	4
		83年9月	46*	5	9	7	8	5	2	2	2	4	21	3
		84年7月	4.2	3.8	2.4	ND	5.1	0.2	4.2	0.2	6.8	1.2	1.6	1.4
		84年8月	24	4.7	6.5	6.7	11	6.5	5.2	ND	3.0	ND	ND	ND
		84年9月	154*	9.2	4.4	4.8	13.8	44.3*	7.6	ND	ND	ND	2.5	ND
化學需氧量	歷	85年7月	76.6*	4.0	23.6	ND	ND	33.8*	6.0	ND	ND	ND	4.0	ND
(mg/L)	TE	85年8月	114*	ND	ND	2.5	ND	ND	2.8	29.7	5.3	ND	3.4	ND
		85年9月	130*	ND	ND	5.2	ND	ND	8.2	2.7	ND	ND	ND	ND
	年	86年7月	112.0*	3.6	4.8	ND	ND	ND	5.6	3.8	2.3	2.4	4.9	2.1
		86年8月	295.0*	ND	23.4	2.9	ND	2.0	12.3	5.3	2.1	4.2	ND	7.0
		86年9月	25.7*	2.6	2.8	6.6	18.8	2.8	8.0	6.2	7.8	6.2	4.6	2.5
	86年9月 87年7月			28.0*	42.2*	17.2	19.7	17.7	29.7*	18.0	14.5	24.3	19.2	25.6*
	87年8月			ND	19.8	3.4	ND	ND	14.9	8.4	3.9	3.2	4.5	ND
	87年9月			ND	6.4	8.3	5.3	5.1	16.7	8.9	4.6	ND	ND	4.5
				8.39	9.59	10.47	10.62	11.62	11.87	8.78	9.89	11.80	11.11	8.31
飲用水水源水	質標	隼86.9.25發佈						2	25					

- 註:1.表中"ND"(Not detected)表示未檢出或低於偵測極限。
 - 2.方法限值與偵測極限詳各季季報附錄 -4 -6。
 - 3.核四環評平均測值係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(80年11月);83年 87年平均測值係整理本監測報告歷次測值。
 - 4. "*"表示不符合飲用水水源水質標準中地面水體或地下水體作為自來水及簡易自來水之飲用水水源者(86.9.25發佈)。

表3.1-19 核四施工環境監測地下水水質歷年與本季氨氮監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	本	88年7月	36.4*	ND	ND	0.052	ND	ND	0.26	ND	ND	ND	0.31	0.40
	李	88年8月	0.73	ND	ND	0.086	ND	ND	ND	ND	ND	ND	0.36	ND
	-	88年9月	127*	0.13	0.063	0.18	0.086	0.091	0.42	0.11	0.080	0.074	0.52	0.069
		83年7月	47.44*	ND	ND	ND	ND	ND	0.56	ND	0.062	ND	0.50	ND
		83年8月	41.15*	ND	0.08	ND	ND	ND	0.57	ND	ND	ND	0.64	ND
		83年9月	34.69*	ND	0.07	0.09	0.52	ND	0.52	ND	ND	ND	0.45	ND
		84年7月	3.90*	ND	ND	0.06	ND	ND	0.58	ND	ND	0.03	0.30	ND
		84年8月	22.6*	0.04	0.08	ND	ND	0.13	0.12	ND	0.07	ND	0.46	ND
氨 氮	। इ. इ.	84年9月	228*	ND	0.07	ND	ND	0.07	ND	ND	ND	ND	0.07	ND
(mg/L)	歷	85年7月	148*	0.06	0.11	0.12	0.04	ND	0.05	0.04	0.13	0.06	0.23	0.06
		85年8月	27.8*	0.09	ND	0.10	0.08	0.18	0.24	0.26	0.21	0.11	0.06	ND
	年	85年9月	156*	0.52	0.05	0.13	ND	0.22	0.04	0.08	0.04	0.44	0.06	0.31
	·	86年7月	52.70*	ND	ND	0.11	0.04	ND	0.43	0.05	ND	0.26	0.34	0.09
		86年8月	37.10*	ND	0.07	0.28	0.07	ND	0.43	0.04	ND	ND	0.29	ND
		86年9月	13.60*	ND	0.05	0.08	0.24	0.14	ND	ND	ND	0.14	0.79	0.05
		87年7月	87.7*	0.055	0.25	0.240	0.330	ND	0.41	0.093	0.071	0.14	0.36	0.23
		87年8月	442*	0.280	0.570	0.094	ND	0.068	0.450	0.068	0.047	0.078	0.50	0.11
		87年9月	63.4*	0.048	0.150	ND	ND	ND	0.043	0.049	0.065	0.054	0.34	0.26
飲用水水源水	質標	準86.9.25發佈							1					

註:1.表中"ND"(Not detected)表示未檢出或低於偵測極限。

- 2.方法限值與偵測極限詳各季季報附錄 -4 -6
- 3.83年 87年平均測值係整理本監測報告歷次測值。
- 4. "*"表示不符合飲用水水源水質標準中地面水體或地下水體作為自來水及簡易自來水之飲用水水源者(86.9.25發佈)。

表3.1-20 核四施工環境監測地下水水質歷年與本季總有機碳監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	*	88年7月	7.37*	0.70	0.55	0.78	0.51	0.45	0.49	0.29	0.29	0.33	0.79	0.37
	本季	88年8月	17.5*	0.57	0.60	1.65	ND	0.59	ND	ND	0.88	1.82	1.61	1.12
		88年9月	41.0*	1.77	1.45	1.40	0.67	1.02	0.78	2.21	0.61	1.09	2.02	0.75
		83年7月	4.725*	1.272	1.281	0.793	0.623	0.618	0.667	0.904	0.890	1.189	2.835	2.065
		83年8月	3.981	1.134	0.469	0.899	0.635	0.457	0.642	1.116	1.008	1.221	1.849	1.159
		83年9月	5.534*	0.704	0.857	0.734	0.646	0.770	0.605	0.709	0.773	0.836	0.904	1.418
		84年7月	1.502	0.549	0.560	0.679	0.408	0.417	0.622	0.474	0.519	0.669	0.780	0.515
		84年8月	4.7*	1.11	0.91	3.36	2.03	1.16	0.82	0.56	1.21	1.05	1.02	0.94
總有機碳		84年9月	2.32	0.97	0.71	0.92	1.21	0.56	1.19	0.53	0.60	0.65	2.82	1.23
(mg/L)	歷	85年7月	22.0*	0.5	0.4	0.4	ND	0.3	0.4	ND	0.3	0.5	0.6	ND
	84年9月 歴 85年7月 85年8月		28.9*	1.09	0.49	1.03	0.37	0.50	0.47	0.78	0.37	0.37	0.58	0.30
	年	85年9月	27.9*	0.32	ND	0.29	ND	0.29	0.28	ND	ND	ND	0.50	ND
		86年7月	11.10*	0.38	0.23	0.53	0.16	0.27	0.39	0.41	0.41	0.27	0.46	0.53
		86年8月	67.70*	0.69	0.64	0.42	0.25	0.33	0.28	0.42	0.36	0.22	0.78	0.25
		86年9月	7.96*	0.78	0.33	0.60	1.44	0.43	0.28	0.27	0.37	0.37	0.54	0.27
		87年7月	56.9*	6.18*	1.68	4.98*	2.67	1.48	3.18	3.38	2.15	0.93	1.32	2.83
	87年7月 87年8月			ND	4.89*	2.76	ND	ND	2.44	6.40*	2.90	1.90	3.80	ND
		87年9月	32.0*	1.95	2.72	1.39	2.12	1.44	1.60	4.70*	3.54	ND	3.00	2.02
飲用水水源水	質標	隼86.9.25發佈						4	4					

註:1.表中"ND"(Not detected)表示未檢出或低於偵測極限。

- 2.方法限值與偵測極限詳各季季報附錄 -4 -6。
- 3.83年 87年平均測值係整理本監測報告歷次測值。
- 4. "*"表示不符合飲用水水源水質標準中地面水體或地下水體作為自來水及簡易自來水之飲用水水源者(86.9.25發佈)。

表3.1-21 核四施工環境監測地下水水質歷年與本季總硬度監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	+	88年7月	246	58.0	23.0	280	123	34.0	500	61.0	71.0	40.0	53.0	88.5
	本季	88年8月	488	66.9	40.6	284	123	21.9	512	60.7	57.5	38.8	27.9	79.8
	-5-	88年9月	723	65.9	47.9	274	119	13.0	549	56.3	60.9	45.9	17.0	84.6
		83年7月	353.37	72.64	32.39	159.02	139.39	50.06	421.11	110.92	80.49	72.64	90.31	70.67
		83年8月	265.15	97.22	55.98	160.07	131.59	65.08	479.23	94.27	71.69	79.54	61.87	78.56
		83年9月	188.86	120.99	48.42	160.77	127.84	34.87	135.59	46.49	65.86	66.83	63.92	73.61
		84年7月	148.50	71.28	19.80	207.90	132.66	33.66	495.00	110.88	79.20	77.22	83.16	71.28
		84年8月	219	82.2	22.9	222	140	49.8	227	103	77.9	79.7	11.5	82.2
總硬度		84年9月	842	78.7	22.9	214	409	39.9	224	120	75.9	84.4	7.0	88.4
(mg/L)	歷	85年7月	596	72.1	44.2	231	127	28.8	211	93.3	73.1	64.4	9.6	81.2
		85年8月	444	65.0	44.9	235	165	38.2	183	87.9	62.1	52.6	6.7	78.8
	年	85年9月	430	65.0	46.8	239	127	24.8	184	93.6	73.6	45.9	6.7	80.3
		86年7月	254	40.1	15.6	238	122	40.1	508	89.9	46.1	40.1	11.5	79
		86年8月	983	85.9	34.1	248	129	49.2	642	101	98.3	72.4	74.5	107
		86年9月	142	19	17	232	159	15	218	101	15	25	23.3	19
		87年7月	536	56.9	35.9	250	126	43.9	531	96.4	79.8	52.5	98.7	102
		87年8月	120	69.8	50.8	273	118	32.9	568	114	78.3	63.8	9.0	88.7
		87年9月	573	17.9	25.9	307	134	19.9	528	113	20.9	51.8	31.9	82.7

註:83年 87年平均測值係整理本監測報告歷次測值。

表3.1-22 核四施工環境監測地下水水質歷年與本季鐵測值監測結果表

監測井水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	-	88年7月	0.30	0.010	0.0050	0.22	0.0050	0.026	0.014	0.20	0.030	0.0090	0.049	0.92
	本季	88年8月	0.097	0.13	0.069	0.14	0.017	0.030	ND	0.76	0.018	0.0060	0.048	0.49
	-5-	88年9月	0.22	0.016	0.038	0.12	0.0028	0.011	0.031	0.60	0.022	0.064	0.046	0.48
		83年7月	5.56	0.12	17.51	0.62	ND	0.79	0.14	5.32	0.35	0.14	3.68	7.83
		83年8月	4.85	1.36	1.46	0.59	ND	6.79	0.27	1.24	0.12	ND	43.49	7.93
		83年9月	31.95	1.17	2.12	1.97	ND	1.24	0.22	0.85	0.32	0.30	4.3	7.11
		84年7月	1.30	0.15	0.78	1.26	0.08	1.06	0.23	0.74	1.32	0.19	1.11	7.96
		84年8月	0.09	ND	ND	ND	ND	ND	ND	1.86	1.37	ND	0.13	7.84
		84年9月	0.39	ND	ND	ND	0.05	0.08	0.05	0.18	ND	ND	ND	5.3
鐵	-	85年7月	0.24	ND	0.10	0.06	ND	0.07	ND	0.48	0.07	0.24	0.14	0.81
(mg/L)	歷	85年8月	0.23	0.04	0.03	0.20	0.02	0.01	0.11	0.24	0.18	0.03	0.01	3.94
		85年9月	0.11	ND	0.01	0.03	ND	ND	ND	0.05	0.004	ND	0.01	4.92
	年	86年7月	0.168	0.031	0.044	0.179	0.004	0.022	0.04	0.072	0.008	0.012	0.028	3.6
		86年8月	0.17	0.032	0.14	0.082	ND	0.022	0.025	0.58	0.025	0.005	0.018	1.73
		86年9月	0.17	0.018	0.036	0.051	0.011	0.066	0.023	0.16	0.07	0.049	0.095	6.12
		87年7月	0.100	0.035	0.240	0.380	0.12	0.10	0.019	0.16	0.018	0.095	0.13	0.52
		87年8月	0.180	0.0080	0.035	0.076	0.0060	0.073	0.071	0.15	0.013	0.0080	0.061	0.96
		87年9月	0.071	0.057	0.019	0.019	0.0030	0.064	0.057	0.0070	0.043	0.014	0.023	0.92
		核四環評 平均測值	15.42	15.90	83.28	16.90	17.73	19.07	16.24	19.33	19.25	18.38	14.19	18.60

註:1.表中"ND"(Not detected)表示未檢出或低於偵測極限。

^{2.}方法限值與偵測極限詳各季季報附錄 -4 -6。

^{3.}核四環評平均測值係摘錄自「核能四廠第一、二號機發電計畫環境影響評估報告」(80年11月);83年 87年平均測值係整理本監測報告 歷次測值。

表3.1-23 核四施工環境監測地下水水質歷年與本季濁度測值監測結果表

監測井 水質項目		監測時間	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
	4	88年7月	59.6	16.4	26.2	6.47	0.84	20.1	2.05	15.6	0.67	2.49	13.4	87.8
	本季	88年8月	61.5	14.3	26.4	7.7	0.77	18.7	1.45	19.6	16.0	1.57	5.62	26.9
	7	88年9月	90.0	9.45	3.08	3.24	3.13	17.0	2.53	10.9	3.68	1.97	5.62	89.9
		83年7月	56	20	85	4.8	1	9.5	5	67	1.1	2.8	64	68.7
		83年8月	79	15.1	96	6.6	58	75	18	39.3	1.7	2.5	4.3	62.7
		83年9月	20.7	9.37	33.7	6.50	0.8	1.23	20	57.3	2.1	1.16	5.80	45
		84年7月	18	5.2	33	17	2.8	3.1	2.6	4.1	11	3.1	21	90
		84年8月	13.7	16.7	116	14	173	42	90	12.1	7.3	0.52	1.66	28
濁度		84年9月	63	24	349	9.9	355	1540	142	50	4.7	0.63	8.0	35
(mg/L)	歷	85年7月	31	1.3	500	3	0.25	7.9	0.55	23	1.4	1.5	45	45
		85年8月	50	23	39	7	0.85	130	1.30	11	1.6	1.6	1400	95
	年	85年9月	550	12	65	27	1.00	36	1.20	7	4.5	6.2	110	85
		86年7月	16.7	14.4	49.3	16.3	1.13	8.93	1.57	31	2	2	4	35
		86年8月	83	19	1360	7.2	0.72	14	0.71	35	1.02	0.93	6.1	42
		86年9月	25	7.5	59	4	862	20.3	6.1	11.9	15.9	6.5	2.4	74
		87年7月	47.6	11.8	1507	6.1	2.9	19.4	1.0	334	3.80	3.4	30.6	129
		87年8月	85.5	7.0	2232	5.6	0.8	19.3	0.9	251	1.1	1.9	12.9	36.7
		87年9月	54.6	156	162	7.0	0.8	12.4	0.9	88.8	13.4	2.80	5.6	84.0

註:83年 87年平均測值係整理本監測報告歷次測值。

表 3.1-24 核四施工環境監測海域生態浮游植物歷次優勢種 出現情形比較表

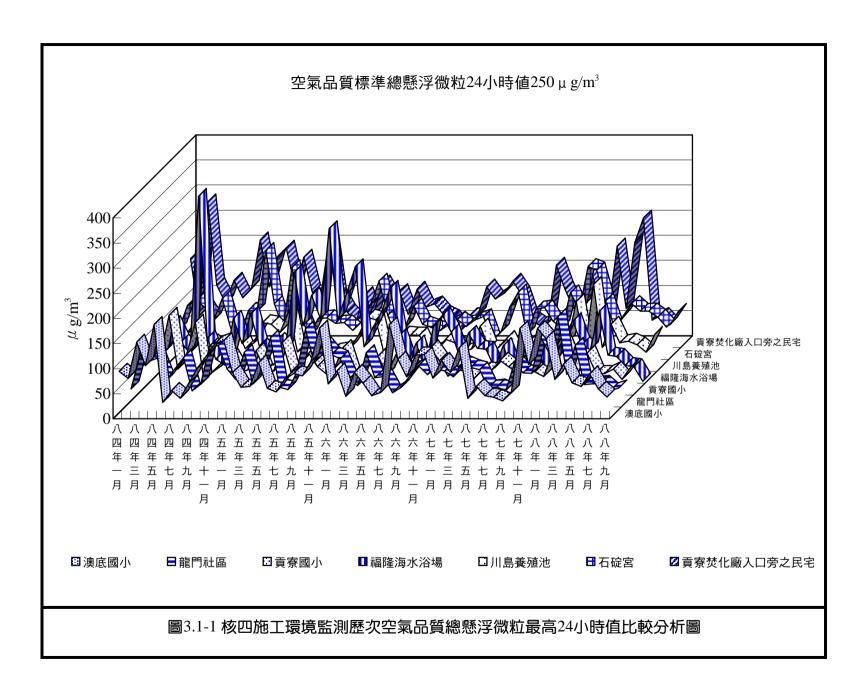
調查日期	優勢種類	百分比
	Trichodesmium thiebautii	33.33%
82年 8月	Navicula spp.	21.11%
	Nitzschia spp.	10.89%
	Thalassiosira spp.	44.97%
82年11月	Navicula spp.	10.89%
	Chaetoceros spp.	8.79%
l	Thalassiosira spp.	44.21%
83年 2月	Navicula spp.	9.92%
	Coscinodiscus spp.	10.95%
02 / 1 1 1	Chaetoceros spp.	31.93%
83年 4月	Nitzschia spp.	13.40%
	Trichodesmium thiebautii	20.92%
02年 0日	Chaetoceros spp.	30.77%
83年 8月	Nitzschia spp.	28.41% 19.20%
	Skeletonema costatum	27.01%
83年11月	Trichodesmium spp.	27.01%
03年11月	Chaetoceros spp. Trichodesmium thiebautii	12.76%
	Chaetoceros spp.	25.97%
84年 2月	Thalassiosira spp.	21.28%
04-4 2/1	Thalassiostra spp. Thalassiothrix frauenfeldii	9.18%
	Trichodesmium spp.	33.68%
84年 5月	Chaetoceros spp.	31.03%
01- 273	Thalassiosira sp.	6.82%
	Trichodesmium spp.	42.97%
84年 8月	Chaetoceros spp.	16.54%
	Nitzschia spp.	25.63%
	Navicula spp.	19.67%
84年11月	Nitzschia spp.	11.84%
	Thalassiosira spp.	11.54%
	Navicula spp.	21.98%
85年 2月	Nitzschia spp.	17.42%
	Thalassiosira spp.	9.14%
85年 5月	Navicula spp.	26.35%
05+ 5/1	Nitzschia spp.	26.13%
85年 8月	Chaetoceros spp.	64.73%
	Trichodesmium spp.	30.25%
05年11日	Chaetoceros spp.	26.72%
85年11月	Thalassiosira spp.	21.79%
	Trichodesmium spp.	13.49%
06年 2日	Thalassiosira spp.	14.22%
86年 2月	Navicula spp. Thalassiothrix frauenfeldii.	13.32%
	Chaetoceros spp.	12.30% 57.28%
86年 5月	Thalassiosira spp.	9.92%
86年 8月	Trichodesmium spp.	9.92% 34.64%
86年11月	Thehodesmum spp. Thalassionema nitzschioides	34.64%
87年 2月	Navicula spp.	29.20%
87年 4月	Navicula spp. Navicula spp.	29.20%
87年 8月	Navicula spp.	19.63%
87年11月	Thalassionema nitzschioides	72.96%
0/十11万	Thalassionema nitzschioides	21.40%
88年 1月	Thalassiosira spp.	16.70%
JOT 1/J	Thalassiosira spp. Thalassiothrix frauenfeldii	14.85%
	Thalassiothrix frauenfeldii	15.84%
88年 4月	Trichodesmium spp.	11.86%
30-F 1/J	Thalassionema nitzschioides	10.50%
88年 7月	Chaetoceros spp.	38.24%
22 1 7/3		30.2 T/0

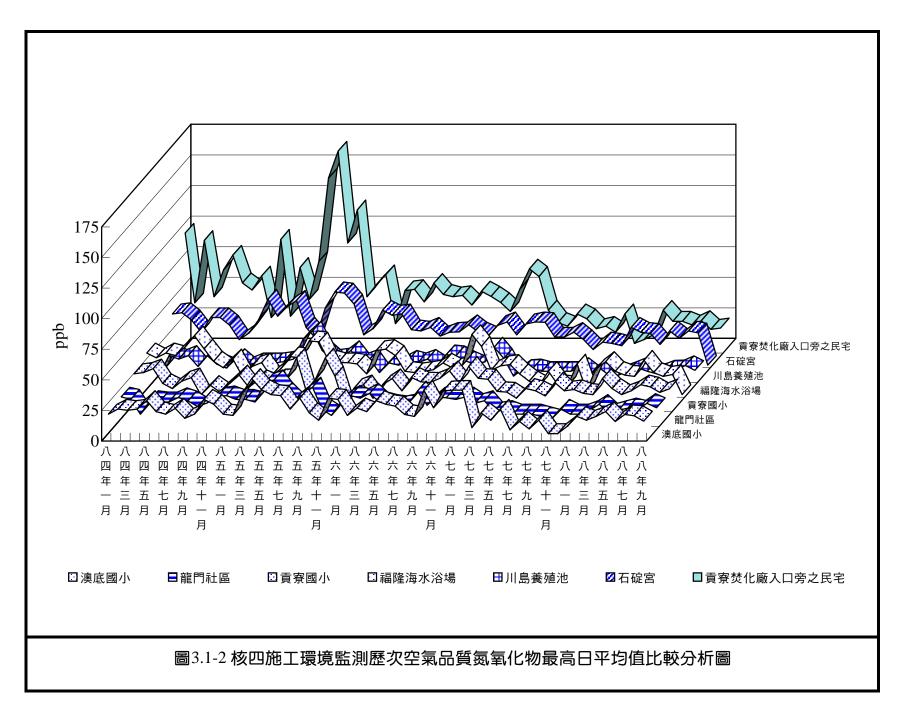
表 3.1-25 核四施工環境監測鹽寮海濱公園及福隆海水浴場 歷次實際售票數與現場遊客調查數之比較

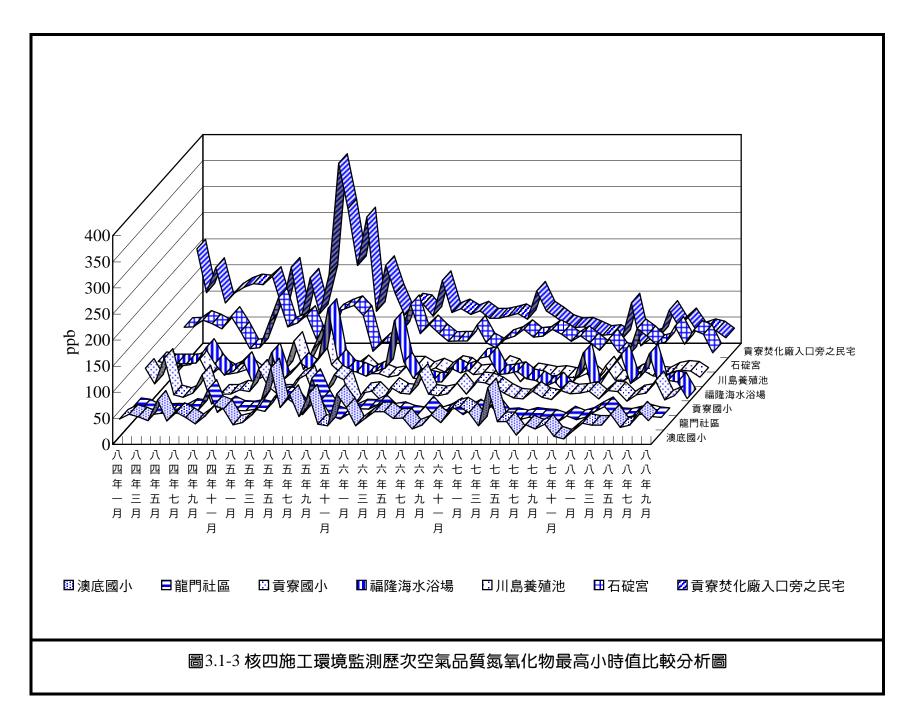
非 假 日										
酶 寮 海			福隆海水浴場		日期	鹽寮海濱公園				
日期	實調遊客數	門票數	實調遊客數			實調遊客數	門票數	實調遊客數	門票數	
84/01/23	15	13	40	0	84/01/22	507	288	456	0	
84/02/20	256	49	74	0	84/02/19	514	161	320	0	
84/03/27	159	61	88	0	84/03/26	745	348	478	0	
84/05/01	1422	642	1305	0	84/04/30	2447	1237	2230	0	
84/05/29	233	297	230	0	84/05/28	1678	941	2352	0	
84/06/12 84/07/31	0	0	221 46	0	84/06/11 84/07/30	0	0	597 1781	0	
84/07/31	1885	810	1592	0	84/08/27	5754	3330	1660	0	
84/09/04	844	160	204	0	84/09/03	3845	844	1362	0	
84/10/16	745	120	100	0	84/10/15	1211	1700	800	0	
84/11/14	772	20	120	0	84/11/19	785	840	143	0	
84/12/12	888	508	144	0	84/12/10	1091	880	439	0	
85/01/29	112	70	34	0	85/01/28	195	216	39	0	
85/02/12	756	100	33	0	85/02/11	105	400	285	0	
85/03/26	114	80	84	0	85/03/29	251	986	180	0	
85/04/30	371	160	192	0	85/04/28	897	1408	712	0	
85/05/14	436 524	134	117 201	0	85/05/12 85/06/30	722 719	520 1320	356 429	0	
85/06/28 85/07/27	1119	200	704	0	85/07/28	1153	1040	819	0	
85/08/11	667	0	520	0	85/08/11	1044	0	857	0	
85/09/16	83	0	67	0	85/09/22	557	0	378	0	
85/10/28	57	0	57	0	85/10/31	163	0	1061	0	
85/11/16	25	0	156	0	85/11/17	195	0	43	0	
85/12/21	58	0	176	0	85/12/22	254	0	270	0	
86/01/25	0	0	3	0	86/01/26	0	0	2	0	
86/02/22	362	0	111	0	86/02/23	1150	0	402	0	
86/03/22	16	0	17	0	86/03/23	22	0	12 99	0	
86/04/26	54 173	0	112 146	0	86/04/27 86/05/25	80 247	0	212	0	
86/05/24 86/06/07	1214	0	832	389	86/06/08	2053	0	1527	1689	
86/07/26	555	0	684	649	86/07/27	719	0	1996	1904	
86/08/30	55	0	92	77	86/08/31	71	0	593	570	
86/09/20	292	0	378	361	86/09/21	359	0	4866	4823	
86/10/18	21	0	1026	813	86/10/19	134	0	1267	774	
86/11/29	36	0	73	61	86/11/30	52	0	92	83	
86/12/20	43	0	68	50	86/12/21	41	0	84	79	
87/01/17	43	0	47	41	87/01/10	40	0	92	78	
87/02/21	35 70	0	51 53	41	87/02/14 87/03/14	239 251	0	183 320	161	
87/03/21 87/04/18	138	0	280	276		276	0	498	308 470	
87/04/18	133	0	311	281	87/05/09	212	0	483	452	
87/06/20	131	0	384	390	87/06/13	269	0	813	810	
87/07/18	84	0	1,213	1,154	87/07/11	242	0	2,194	2,153	
87/08/15	108	0	2,083	1,962	87/08/22	325	0	2,429	2,263	
87/09/19	66	0	492	463	87/09/20	186	0	497	492	
87/10/03	659	0	765	748	87/10/24	8	0	25	21	
87/11/21	10	0	40	29	87/11/28	36	0	73	63	
87/12/19	8	0	35	18	87/12/26	260	0	396	403	
88/01/30	33 45	0	51 41	47 24	88/01/23 88/02/13	88 63	0	180 73	166 67	
88/02/06 88/03/06	33	0	72	66	88/03/13	10	0	98	84	
88/04/3	56	0	132	73	88/04/10	251	0	470	636	
88/05/15	407	0	396	379	88/05/8	732	0	576	564	
88/06/5	69	0	138	138	88/06/12	1360	0	1420	1376	
88/07/17	268	0	1347	1128	88/07/25	1791	0	1712	1544	
88/08/7	552	0	712	702	88/08/8	1552	0	1235	1171	
88/09/4	643	0	345	322	88/09/5	1201	0	549	519	

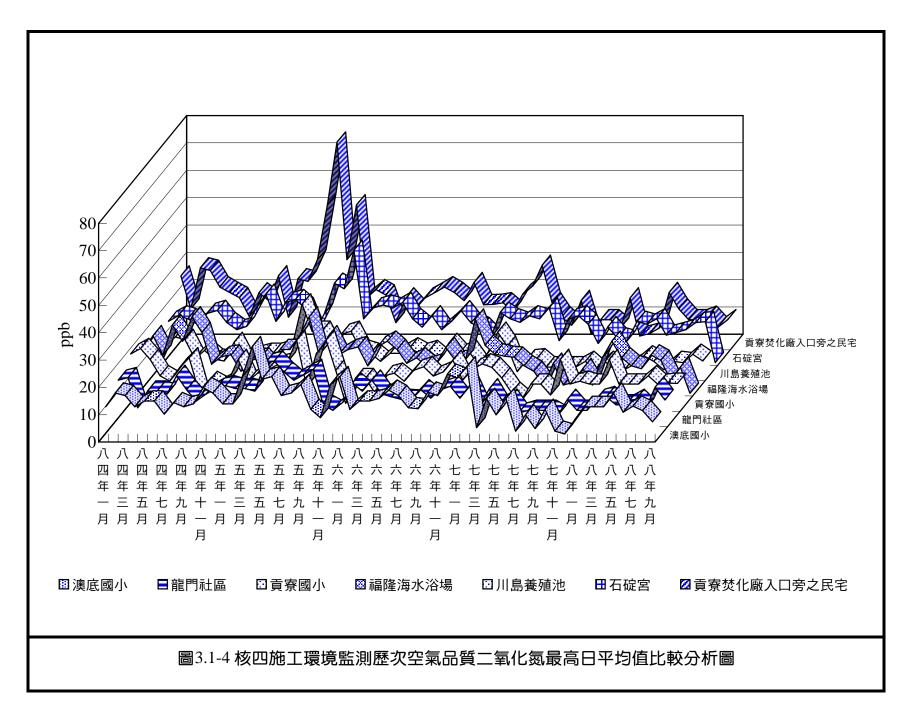
註:1.鹽寮海濱公園則於85年8月起因颱風之故,關閉整修至今。

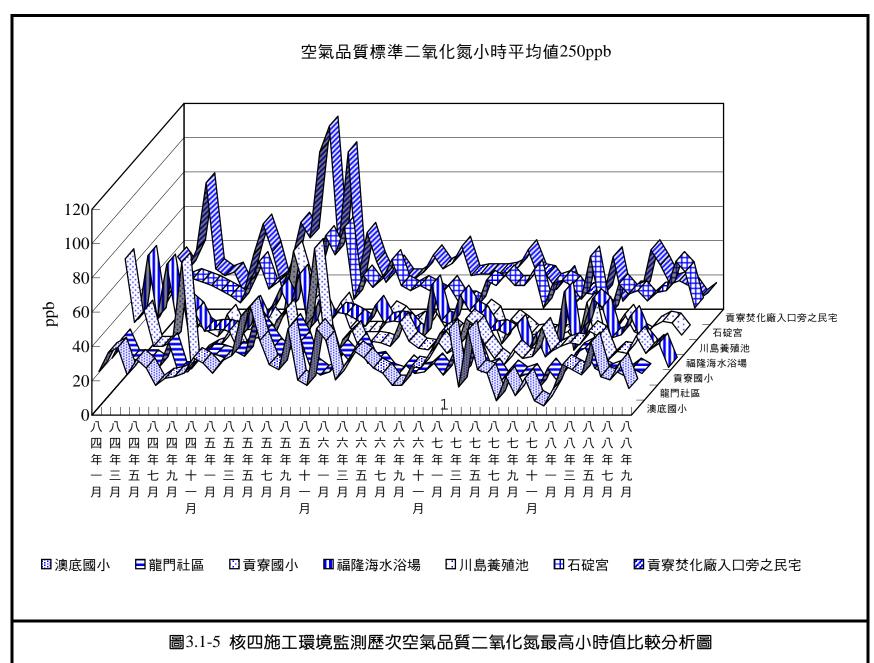
^{2.}資料統計自84年1月至88年9月。

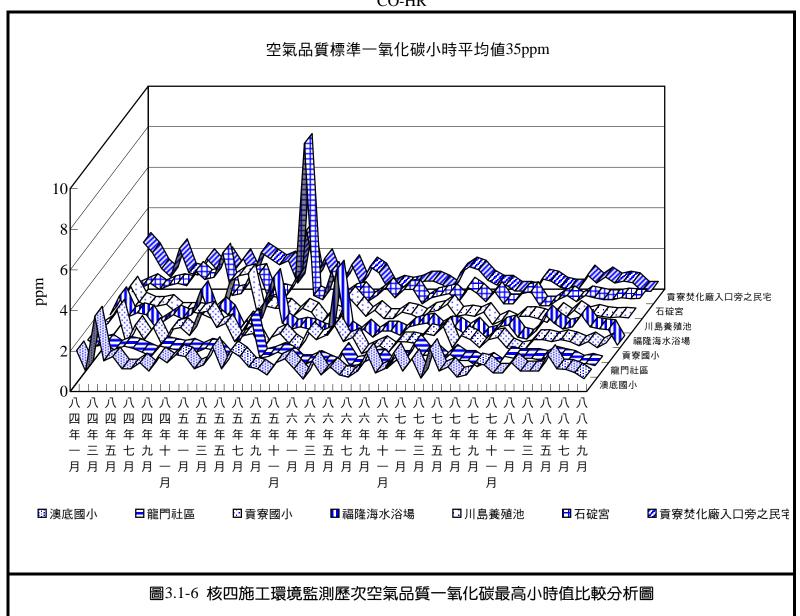

表 3.1-26 核四施工環境監測景觀品質調查結果評分表

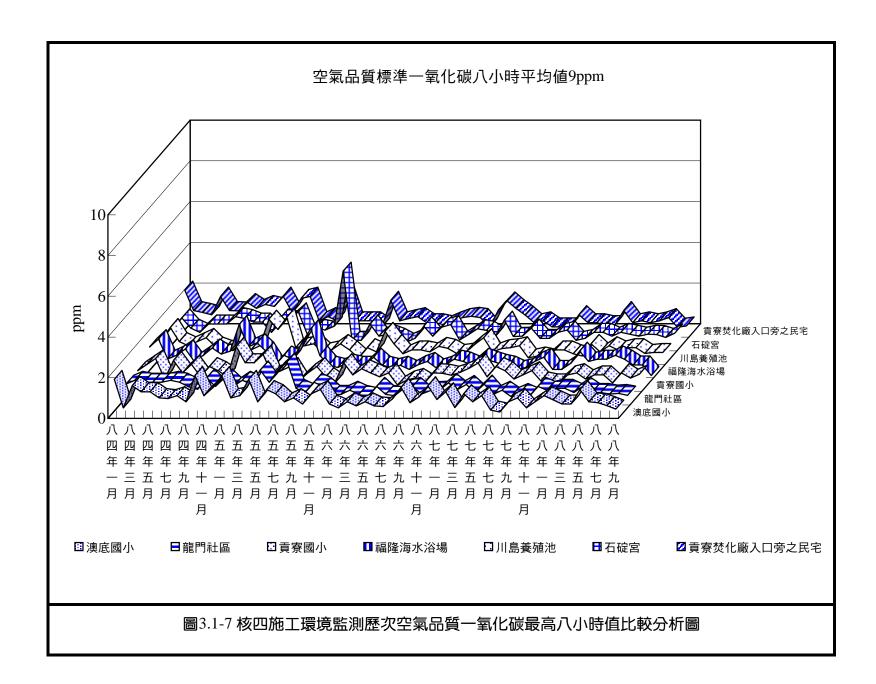

月份	觀景點	一號觀景點	二號觀景點	三號觀景點	四號觀景點	五號觀景點 (西向)	五號觀景點 (北向)	天氣
	1月份	32	30	22	17			晴
	2月份	32	30	22	19			陰
	3月份	32	30	26	21			雨
	4 月 份	32	30	26	19			陰
	5 月份	32	30	26	17	-		晴
84	6月份	32	30	26	17	-		晴
年	7月份	32	30	26	17			陰
	8月份	32	30	26	16			晴
	9月份	32	30	26	16			晴
	10 月份	32	30	26	16			晴至多雲
	11月份	32	30	26	16			陰
	12月份	32	30	26	16			晴雨
	1月份	32	30	26	17			陰雨
	2月份	32	30	26	19			晴至多雲
	3月份	32	30	26	21			晴至多雲
	4月份	34	30	26	21			陰雨
85	5月份	34	30	26	22			晴至多雲
85	6月份	34 32	30	26	22			<u>晴</u>
4	7月份 8月份	32	30 30	26 26	22 22			<u>晴</u> 晴
	, , , , , ,	32	30	26	22			 晴
	9月份 10月份	32	30	26	22	28		<u>唷</u> 晴
	10 月份	32	30	26	22	28		阴 晴
	12 月份	32	30	26	22	28		 陰雨
	1月份	32	30	26	22	28		陰雨
	2月份	32	34	26	22	28		陰
	3月份	32	34	26	22	28		 晴
	4月份	32	34	26	22	28		<u></u> 陰
	5月份	32	34	26	22	28		<u>医</u> 陰
86	6月份	32	34	26	22	28		陰
年	7月份	32	34	26	22	28		晴
	8月份	32	34	26	22	28		晴
	9月份	32	34	26	22	28		晴
	10 月份	32	34	26	22	28		晴
	11月份	32	34	26	22	28		陰
	12月份	32	34	26	22	28		陰
	1月份	32	34	26	22	28		陰
	2月份	32	34	26	22	28		<u> </u>
	3月份	32	34	26	22	28		雨
	4月份	32	34	26	22	28		晴
0.7	5月份	32	34	26	22	28		- 晴
87	6月份	32	34	26	22	28		<u>晴</u>
年	7月份	32	34	26	22	28		<u>晴</u>
	8月份	32	34	26	22	28		<u>晴</u>
	9月份	32	34	26	20	28		<u>陰</u>
	10月份	32	34	26	22	28		<u>晴</u>
	11 月份 12 月份	32 32	34 34	26 26	22 22	28 28		<u>晴</u>
	12 月份 1 月份	32	34	26	22	28		<u>雨</u> 雨
	2月份	32	34	26	20	28		 晴
88	3月份	32	34	26	20	28		晴
年	4月份	32	34	26	20	28		雨
—	5月份	32	34	26	20	28		雨
	6月份	32	34	26	20	28	30	晴
	7月份	34	34	26	20	28	30	晴
	8月份	34	34	26	20	28	30	晴
	9月份	34	34	26	20	28	30	 晴
					1 1 1 1 1 1 1 1 1 1			門

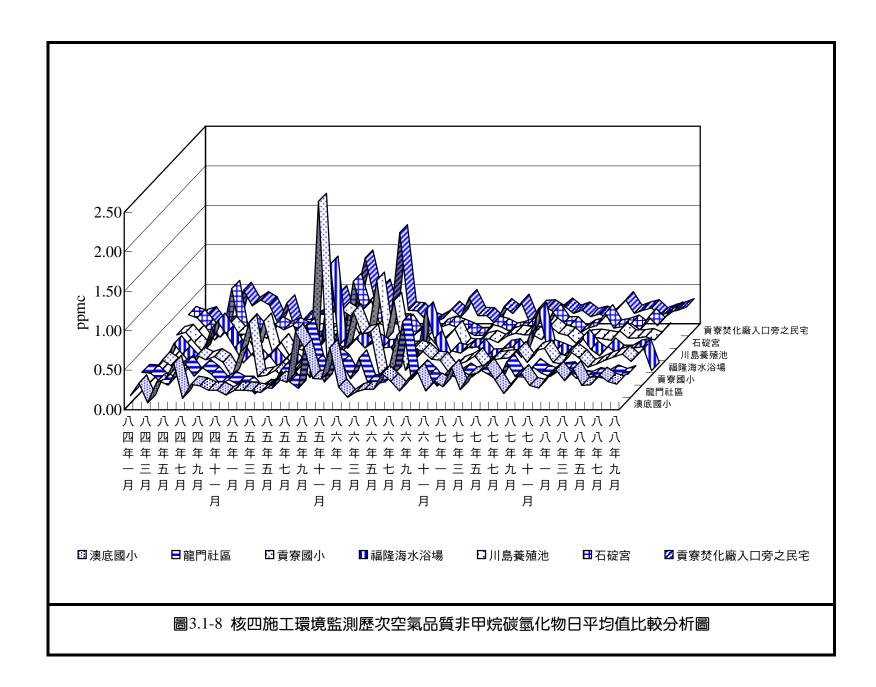

註:1.本表係依據附錄 || ,表 || .13-1 之評分項目予以評定,評分範圍從 8~40 分。

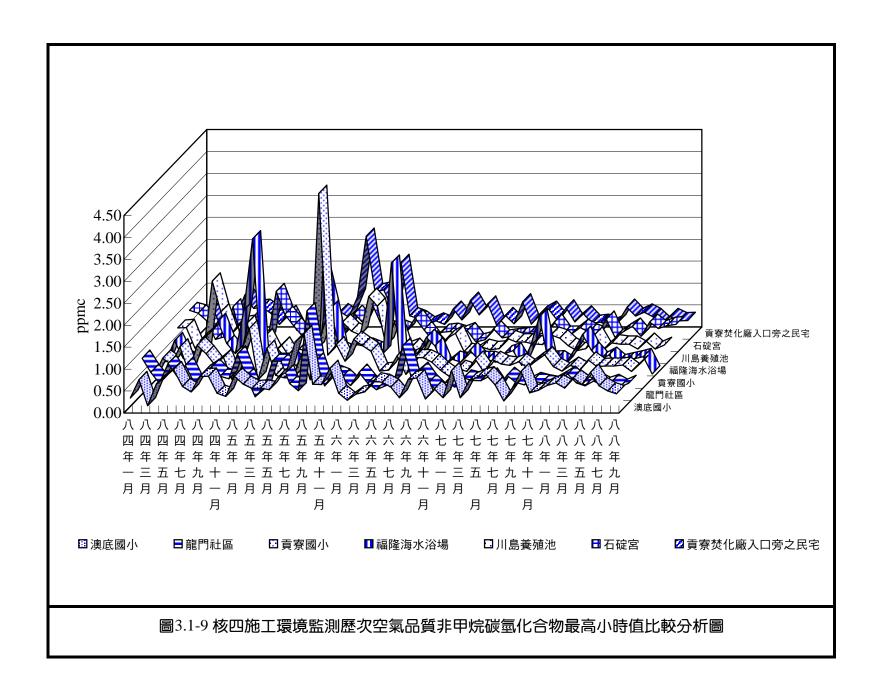

^{2.} 五號(西向)、六號、七號觀景點由於目前尚無任何視覺上之改變,因此暫不予以評分。

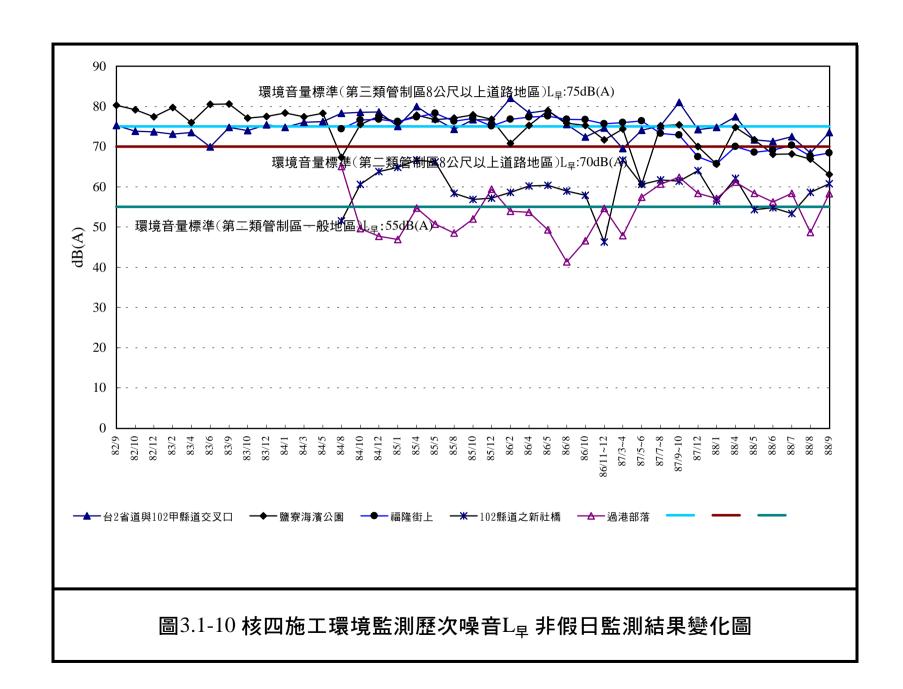

^{3.} 五號(北向)自88年6月起因重件碼頭工程重新動工,故予以評分。

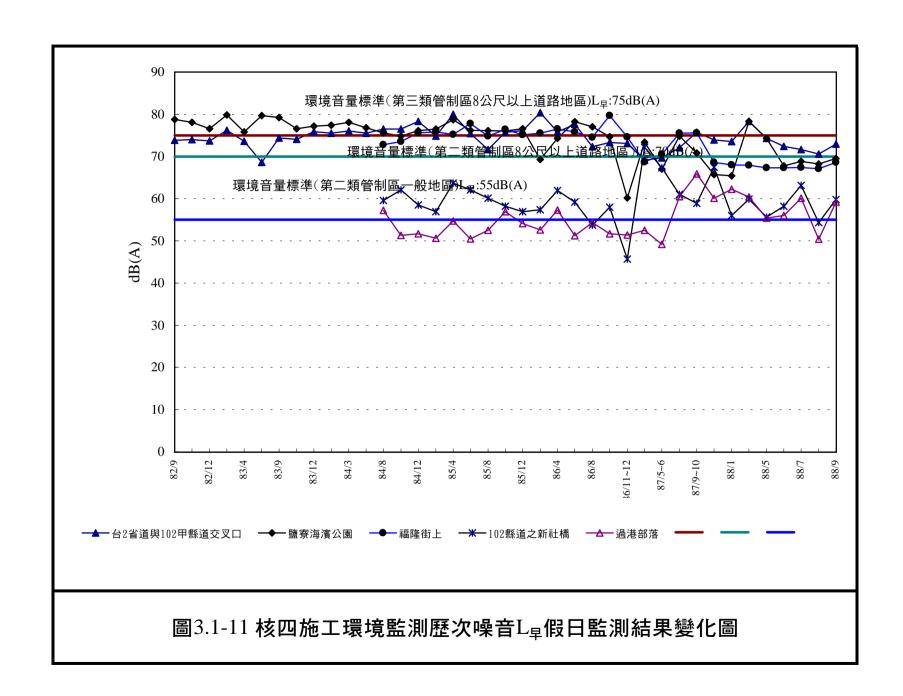


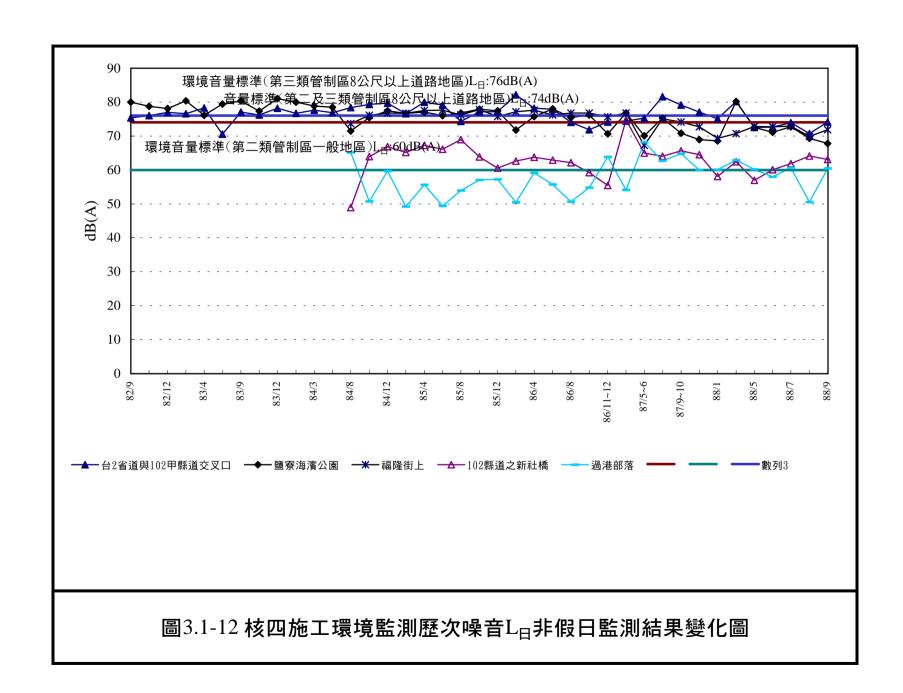


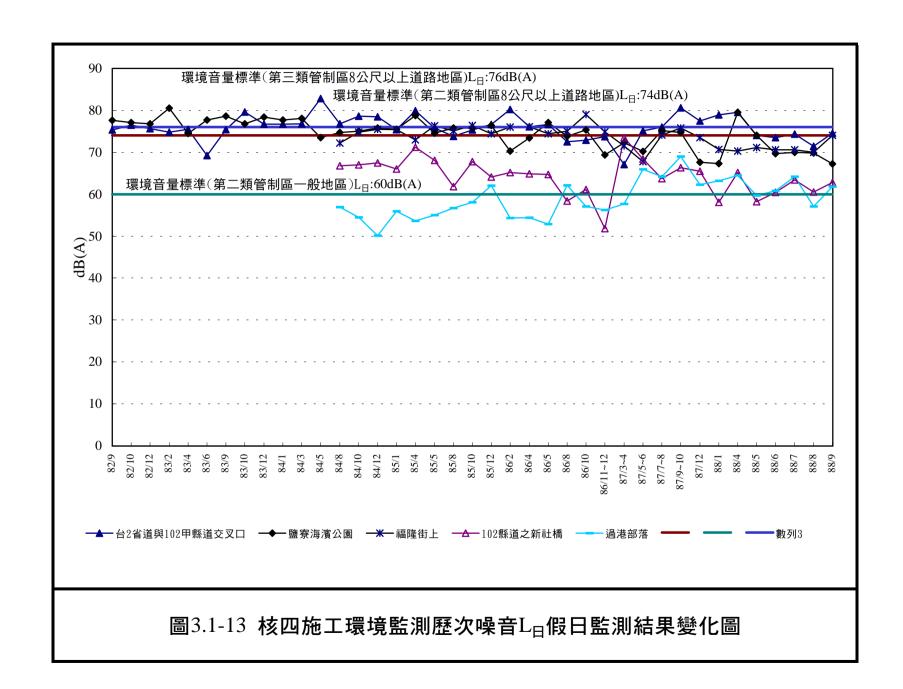


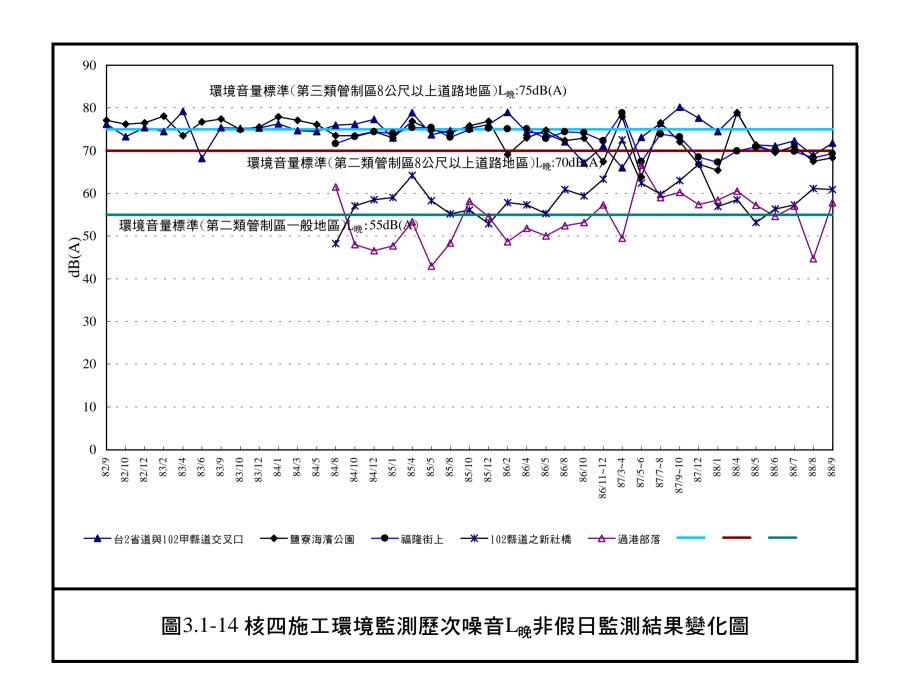


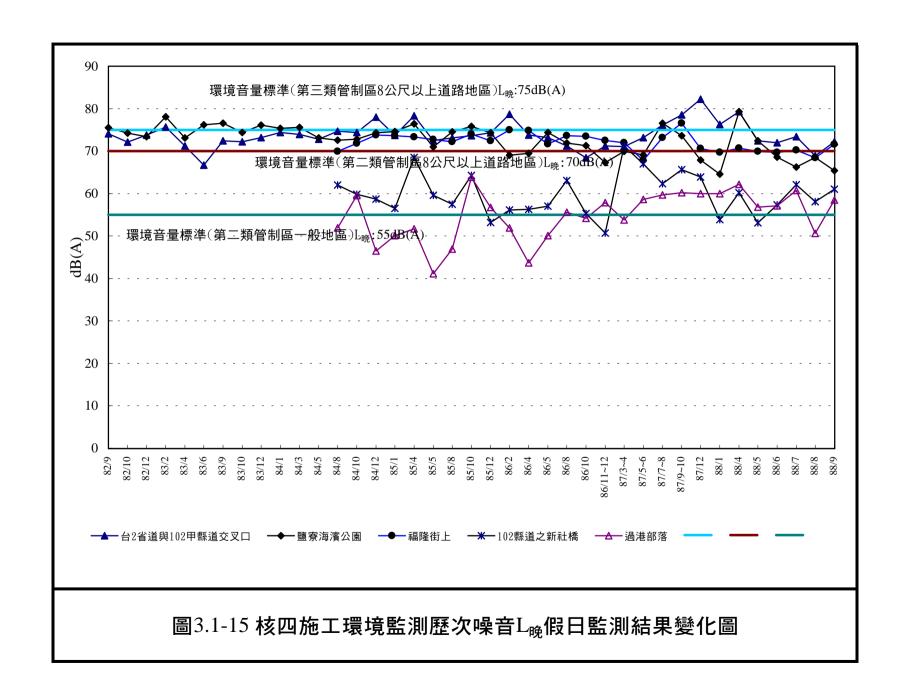


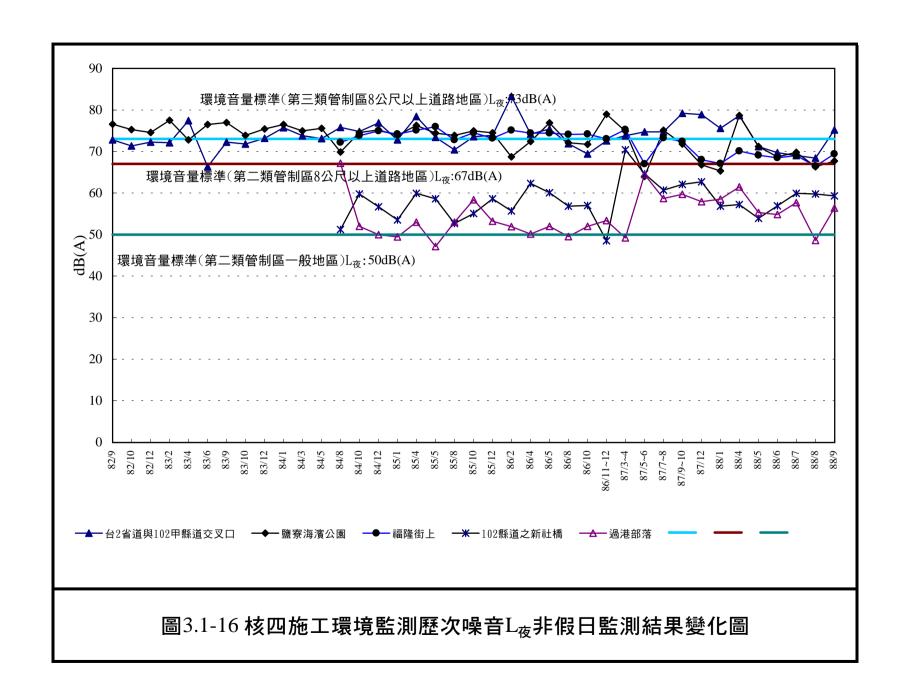


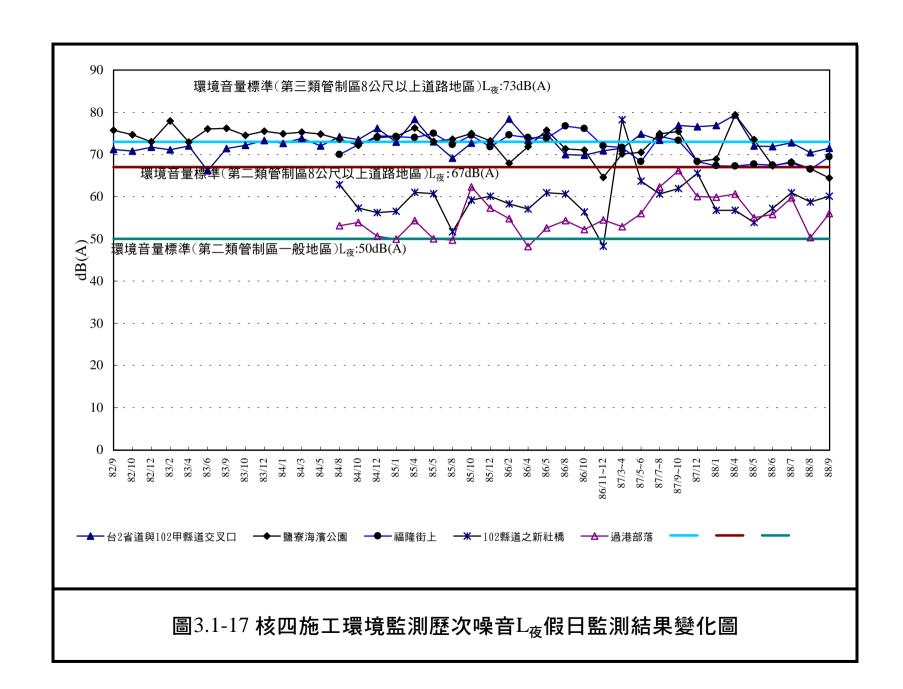


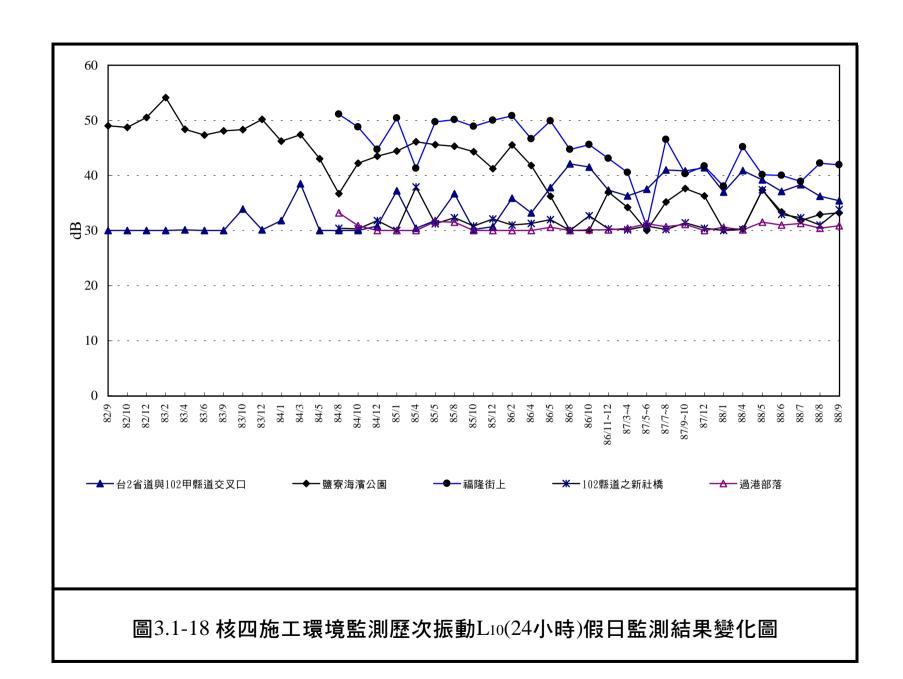


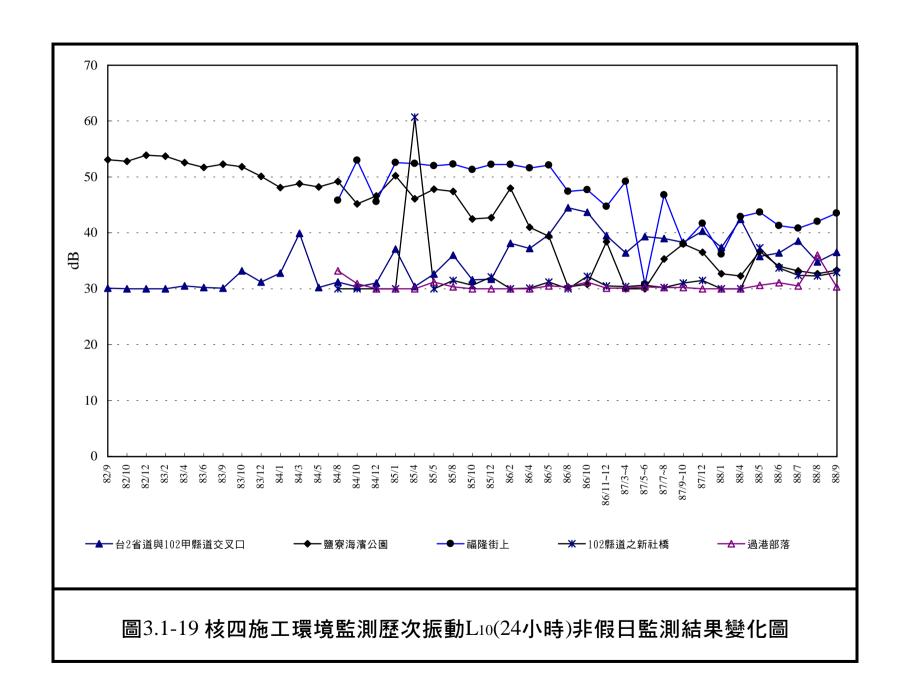


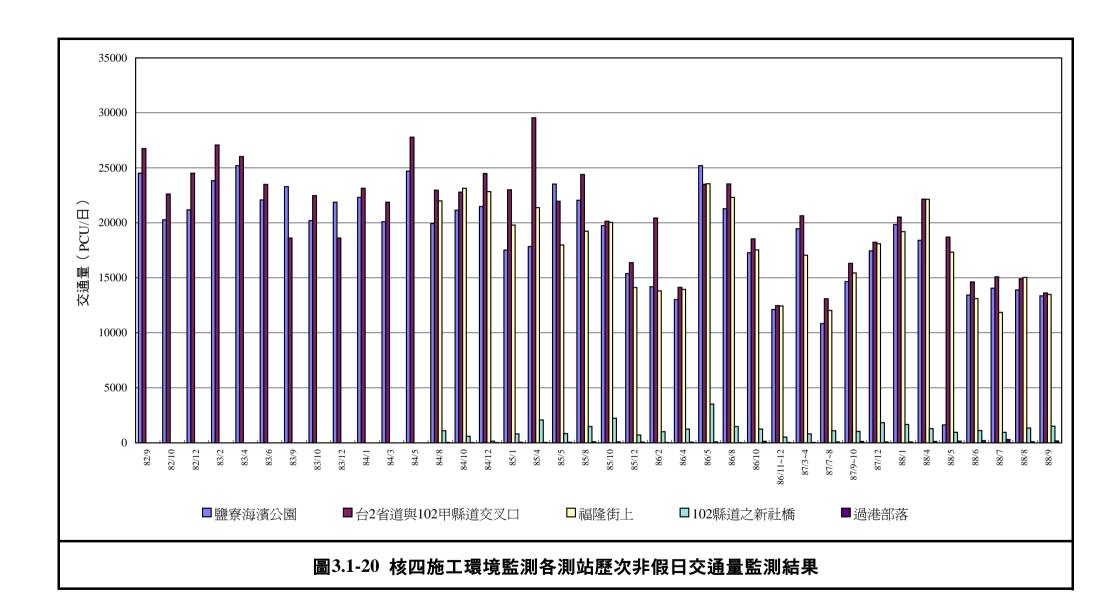


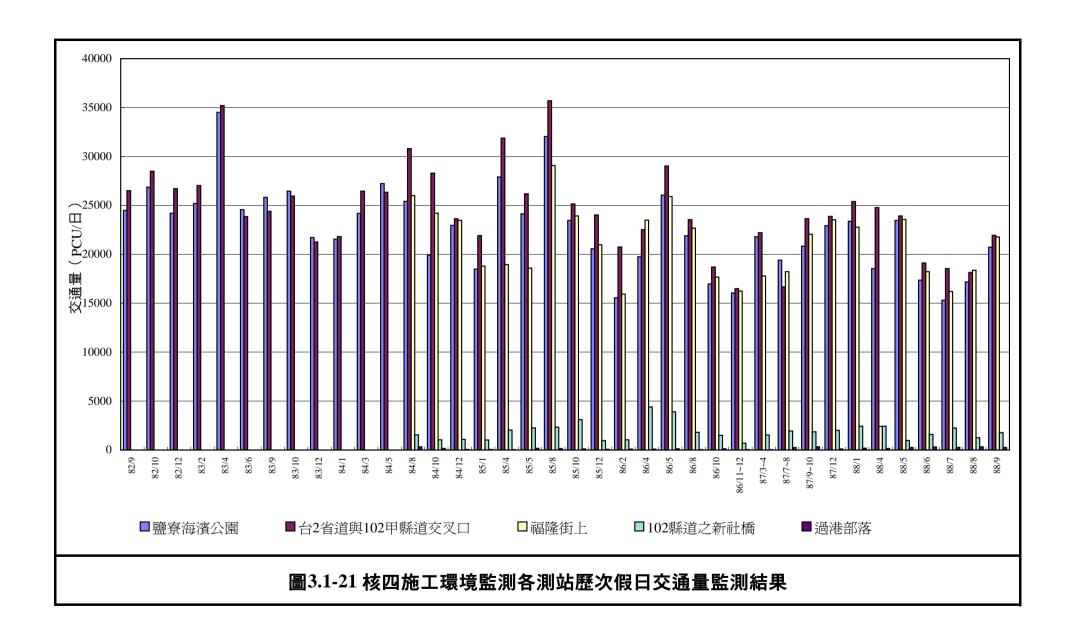


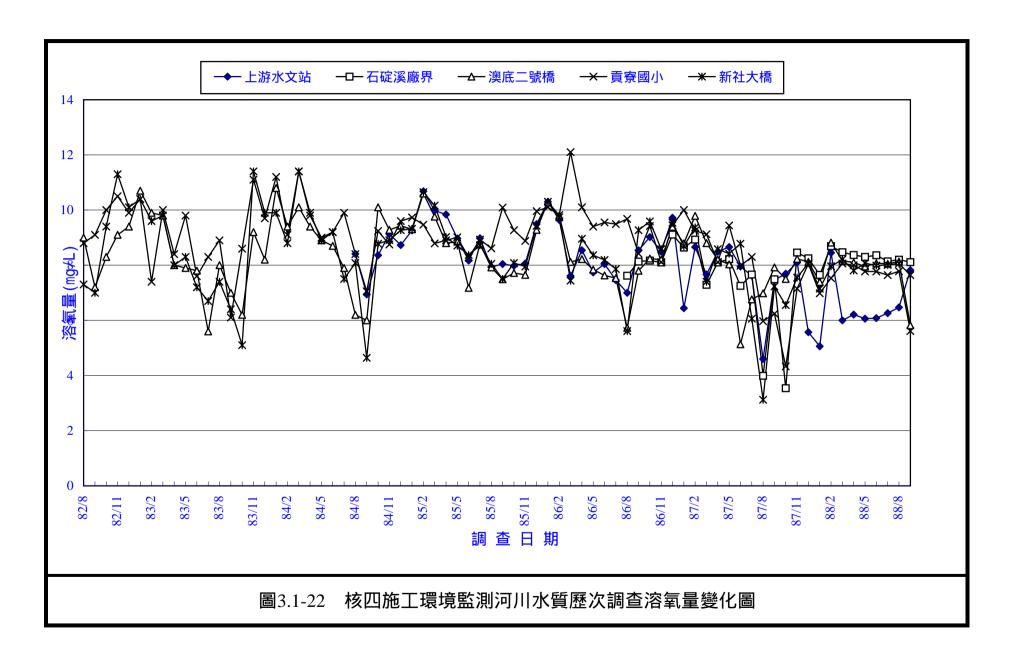


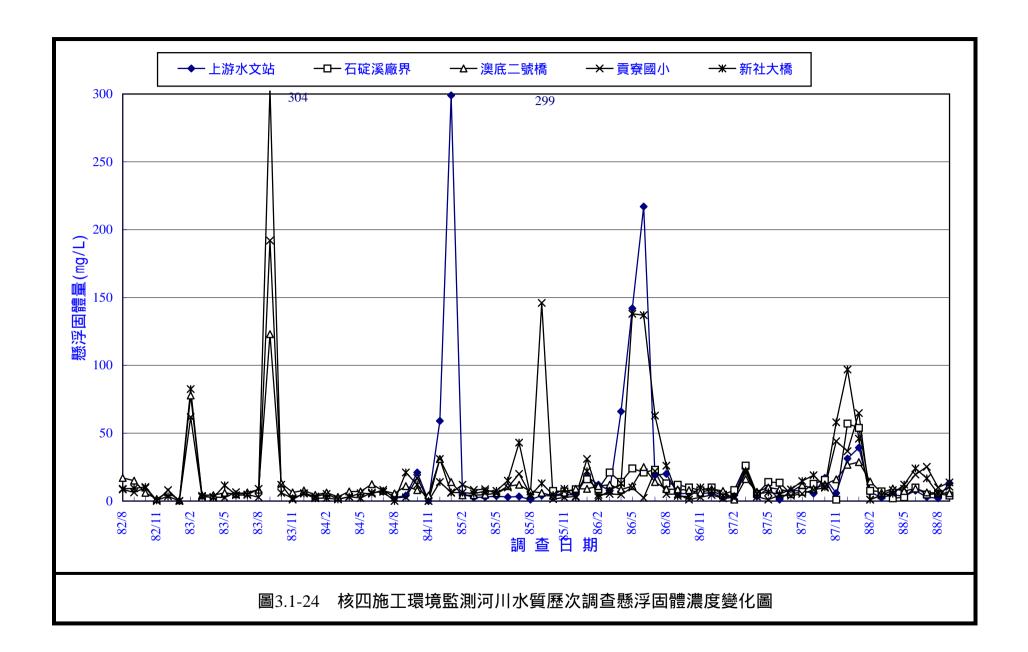


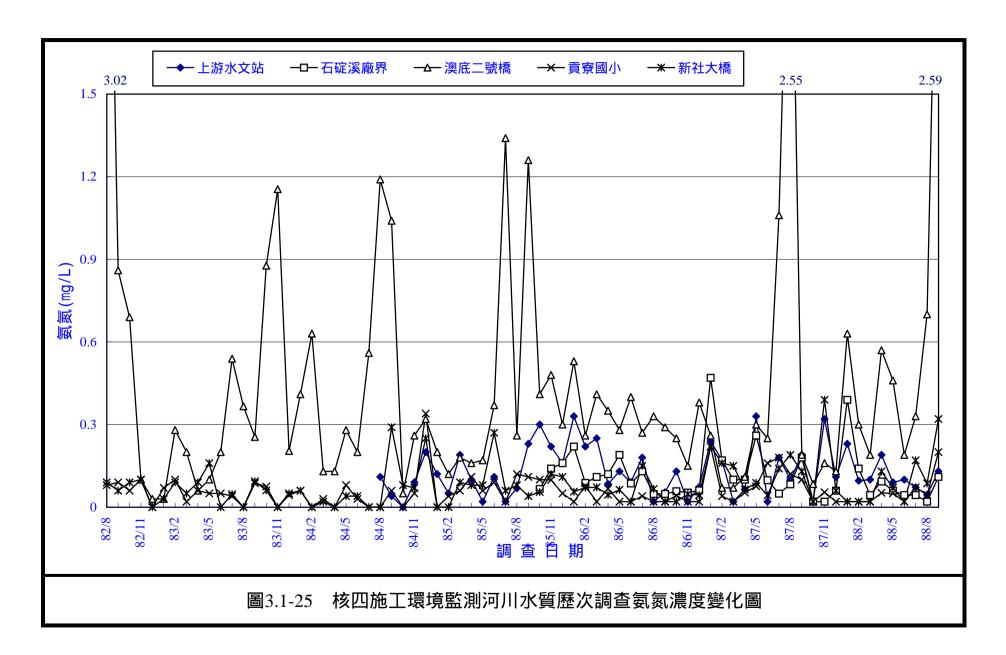


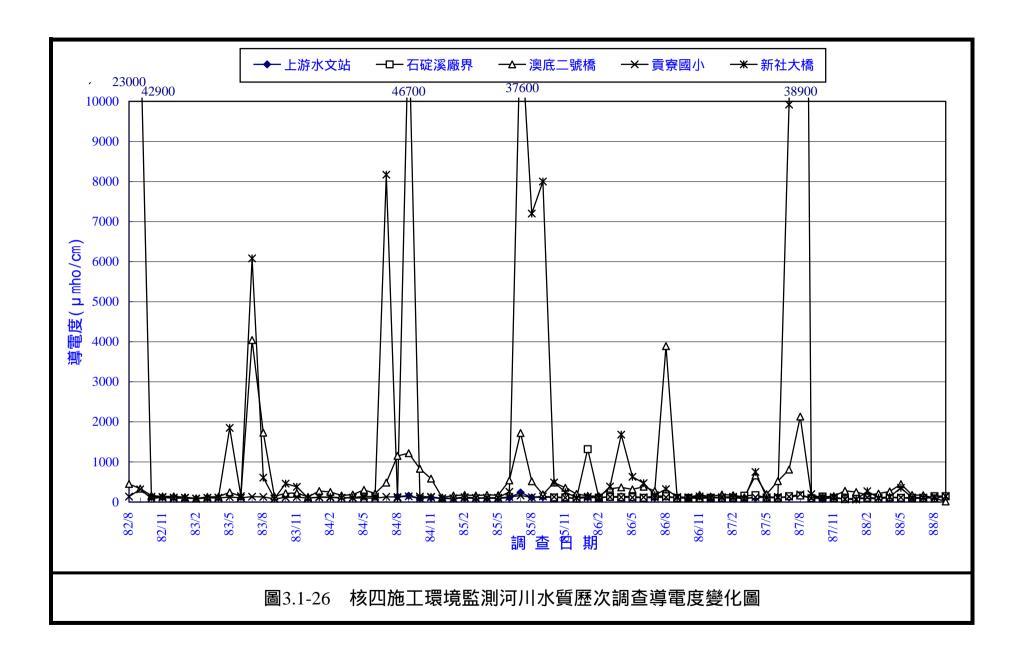


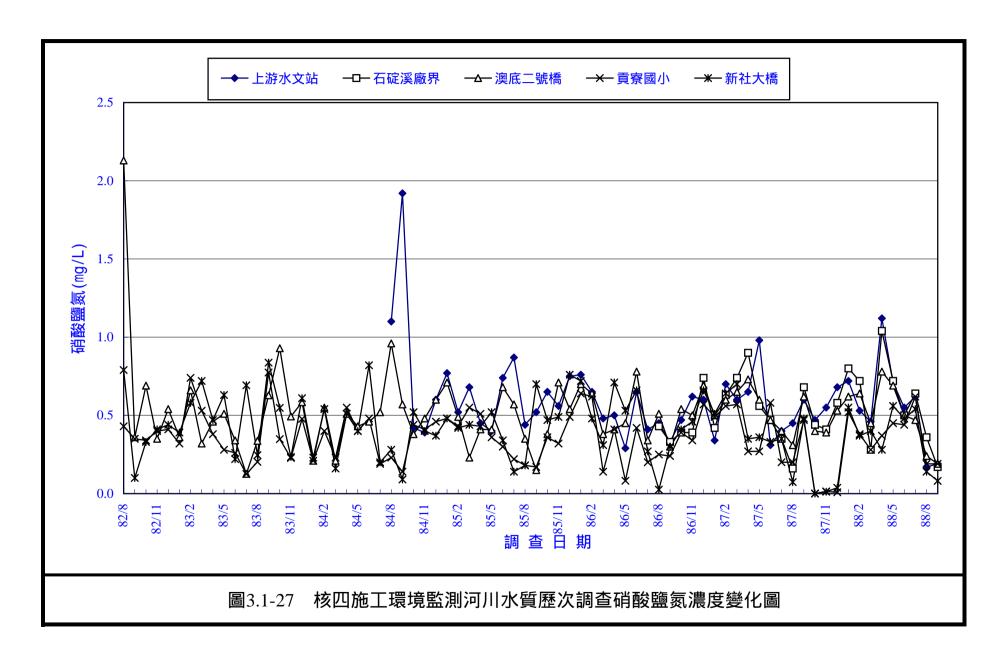


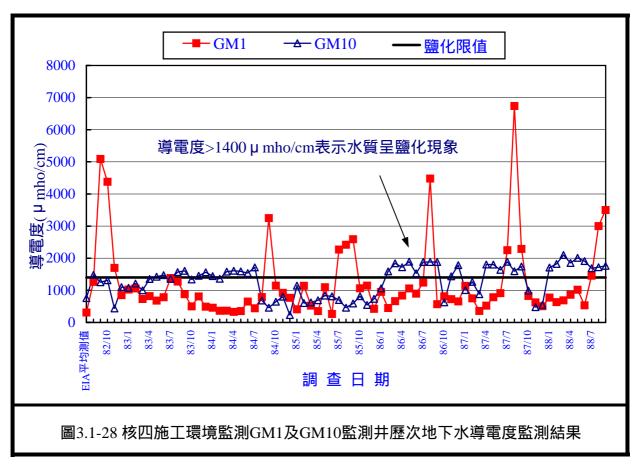


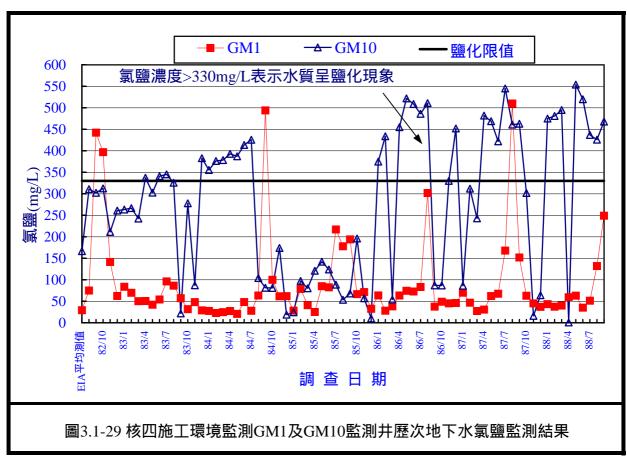


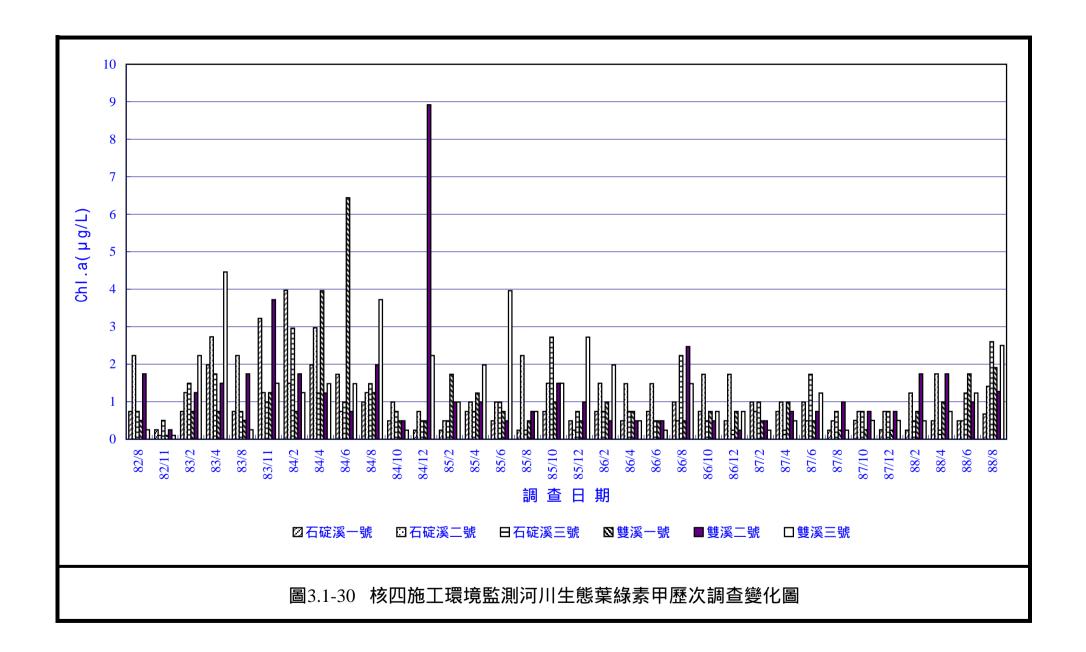

017-03\88-3\traffic,3.1-20

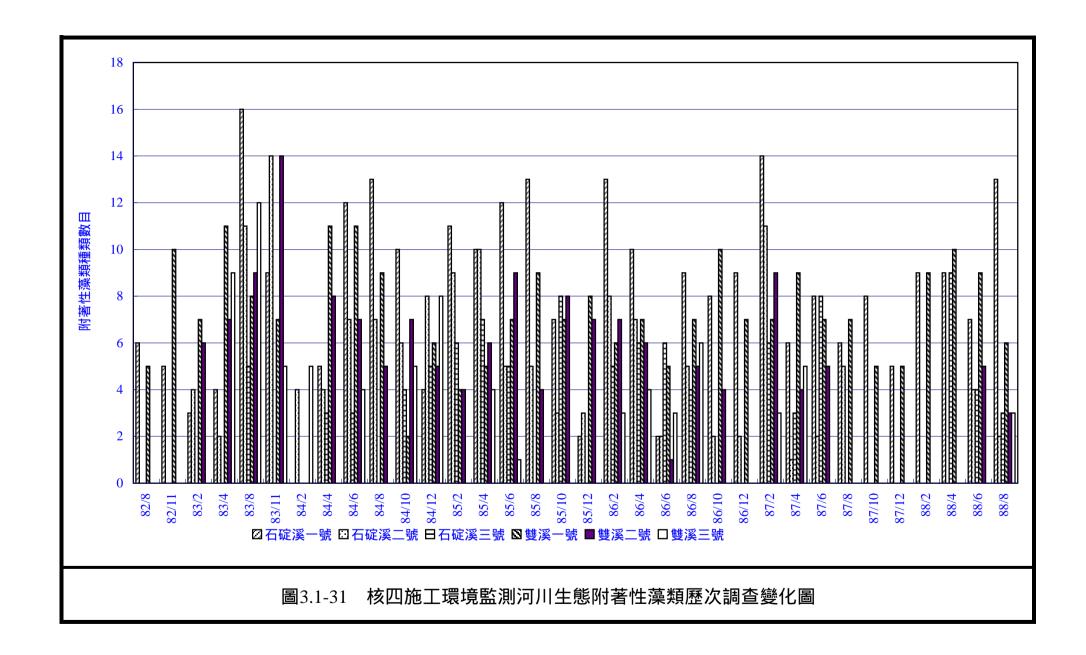


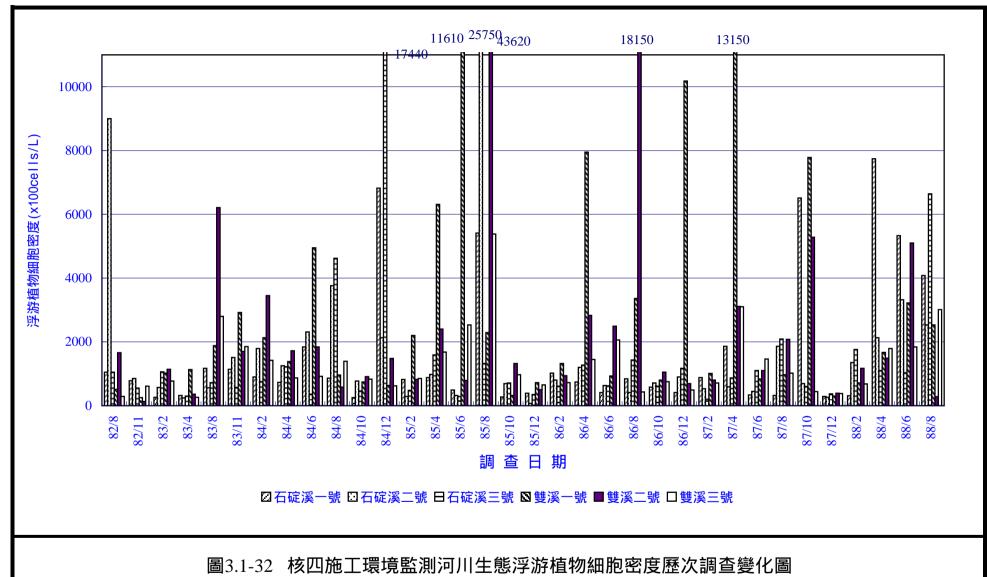


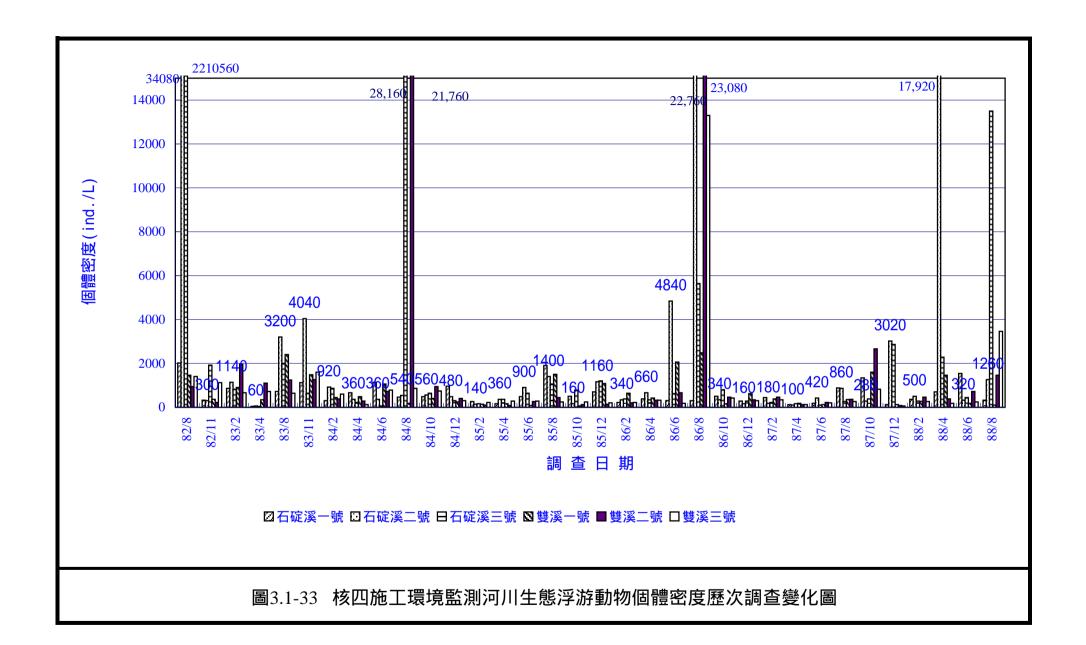


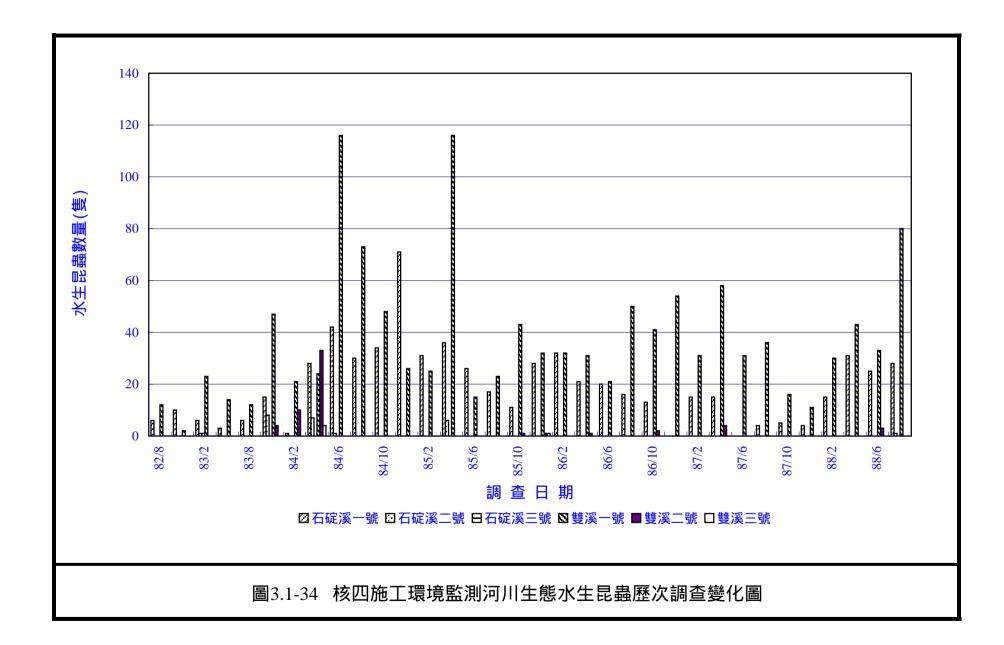


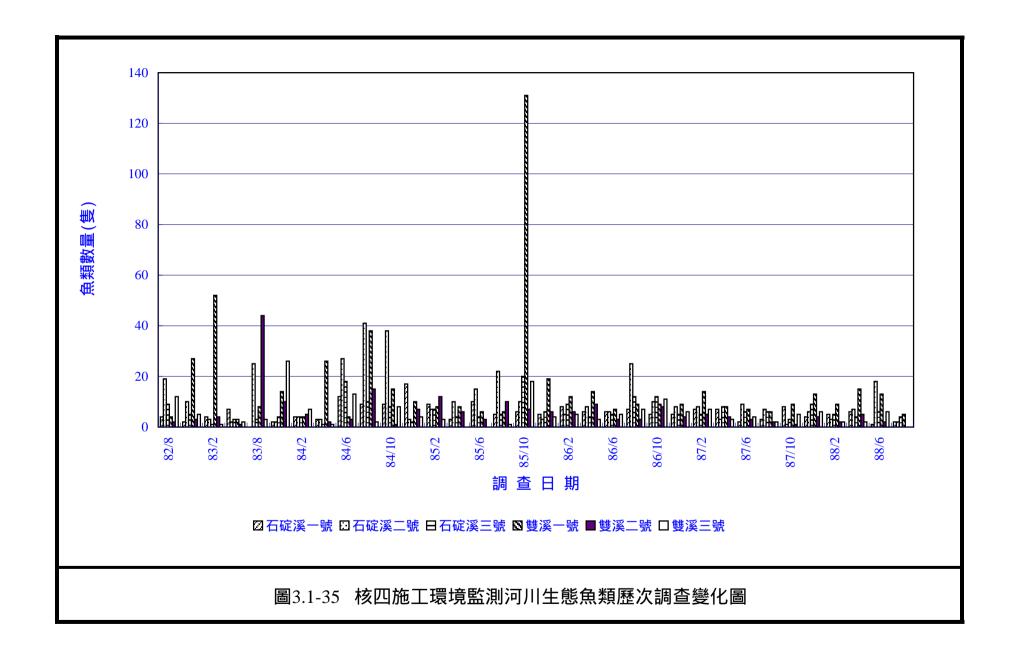


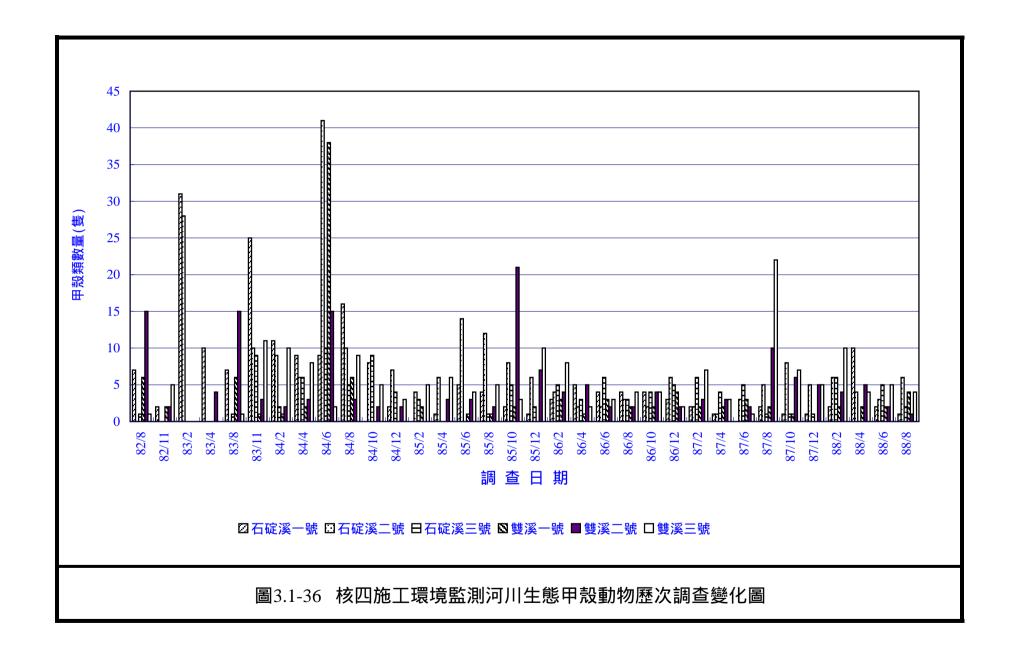


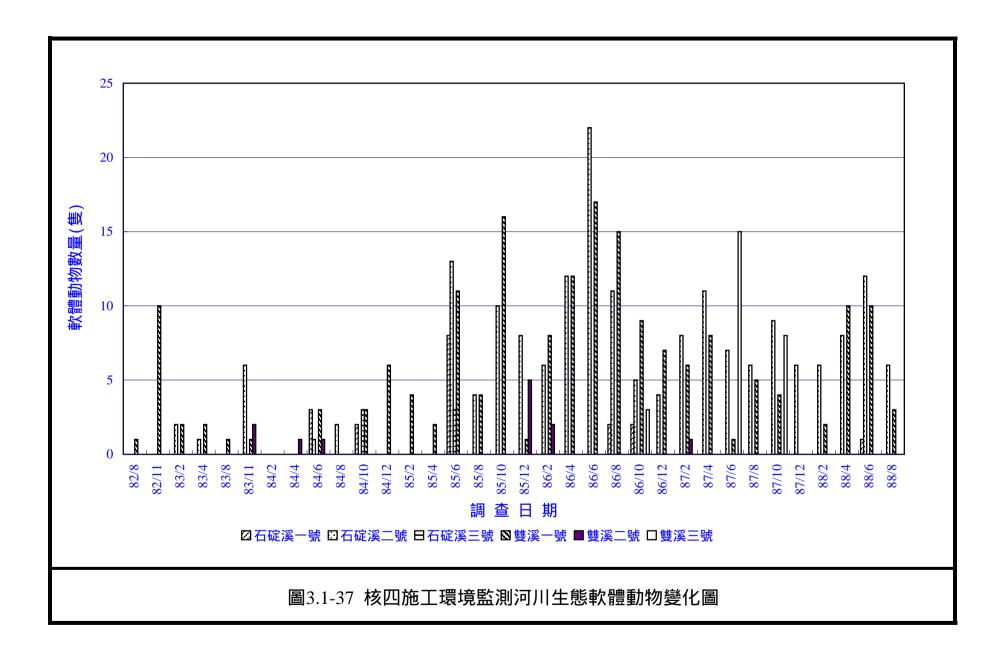


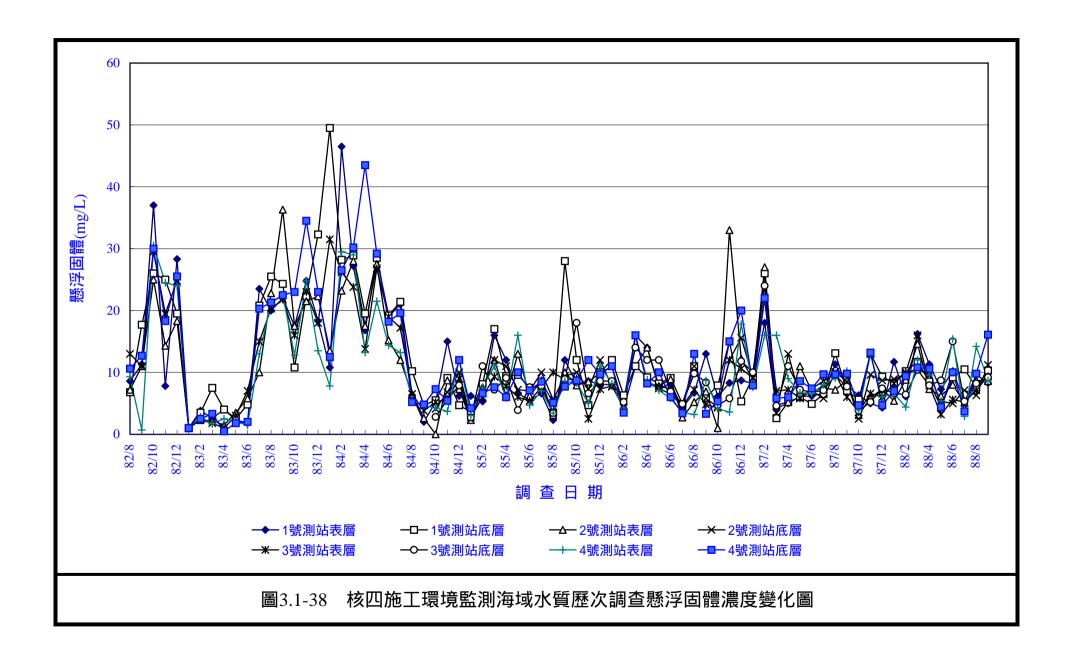


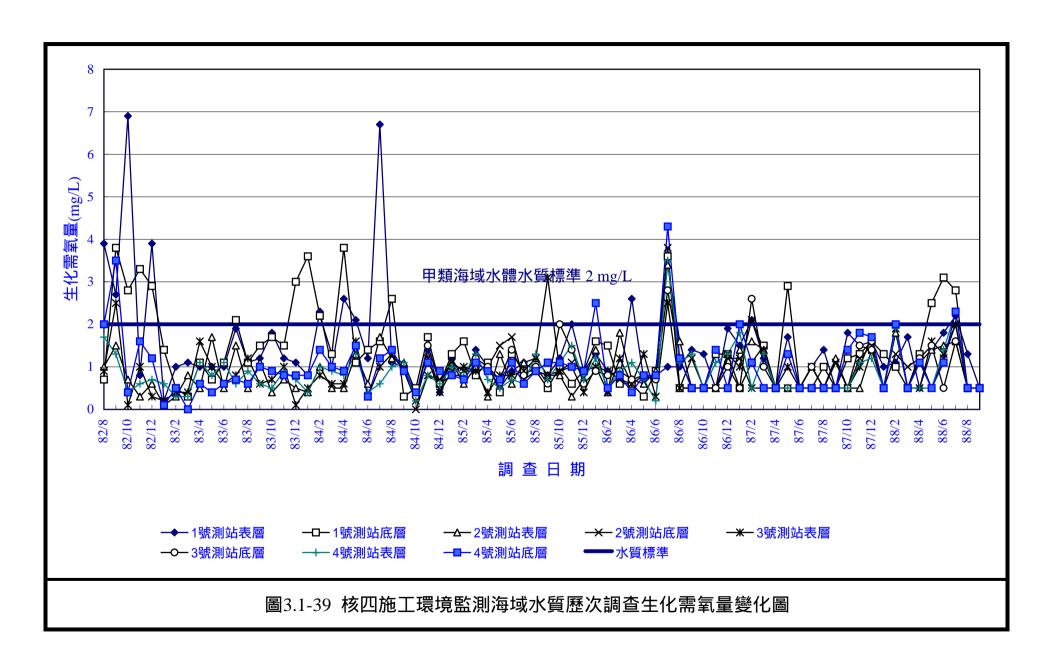


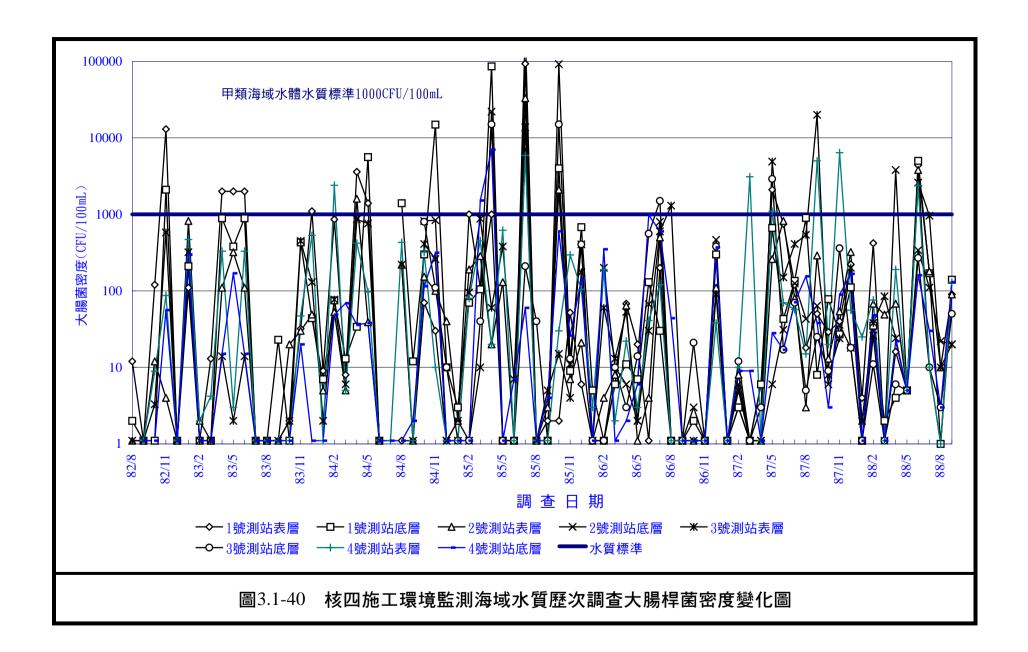


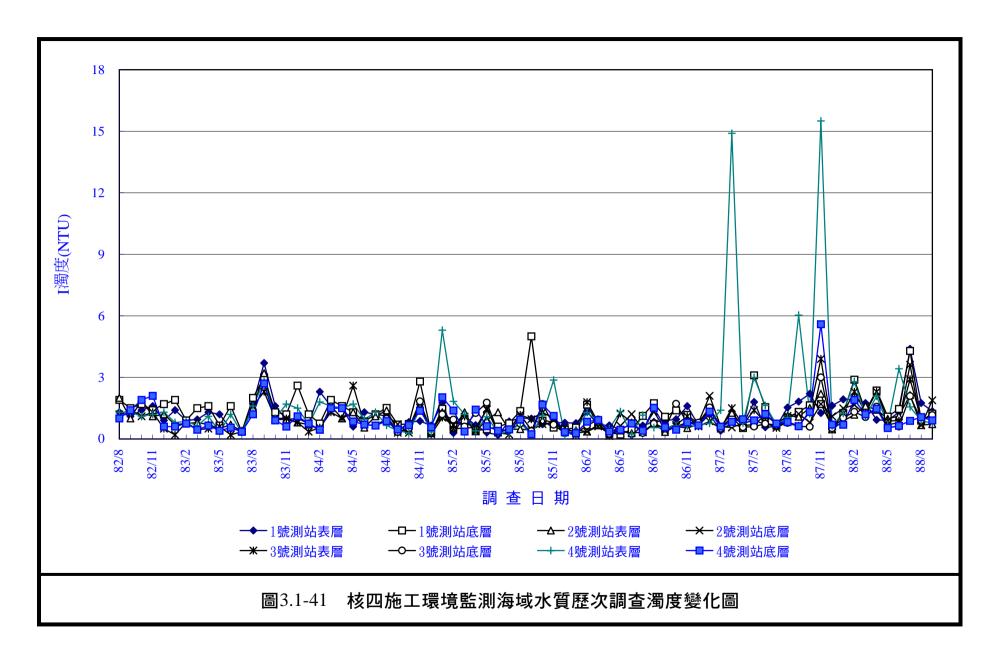


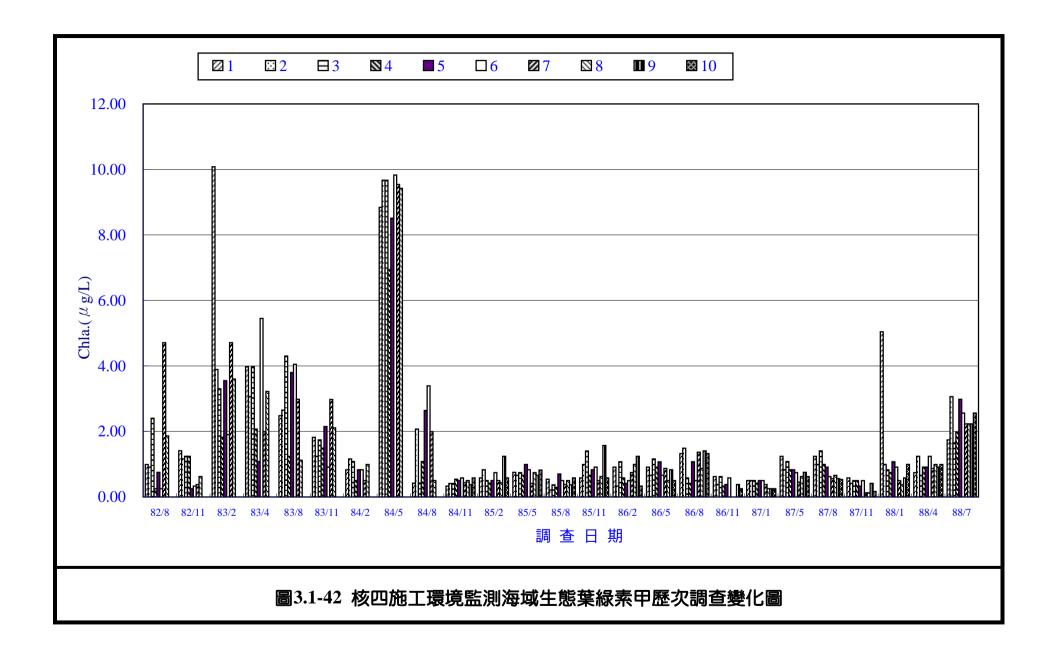


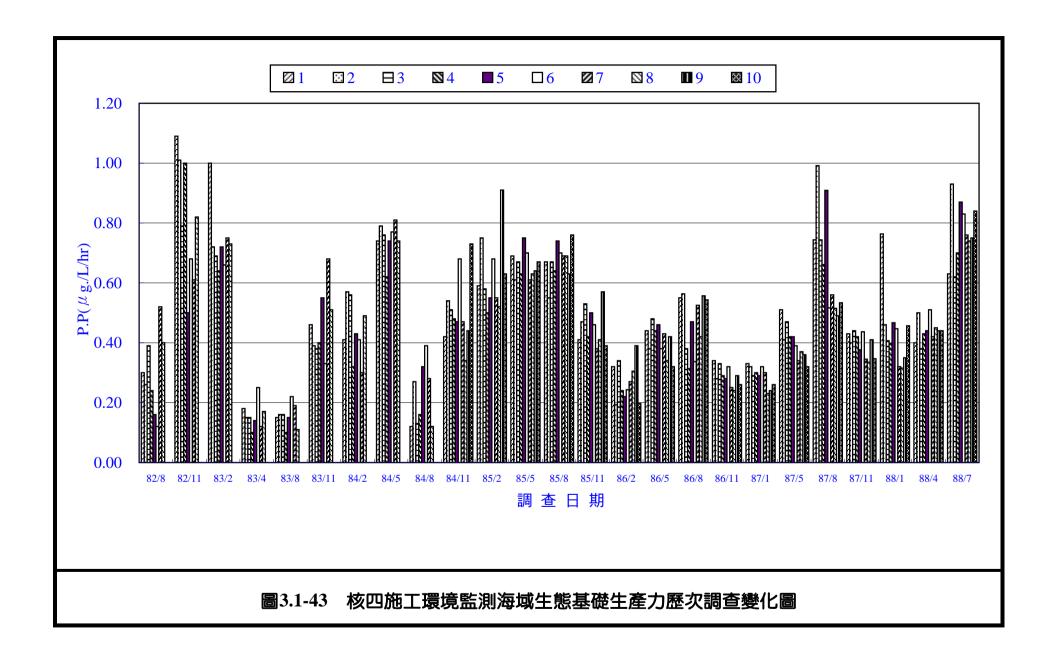


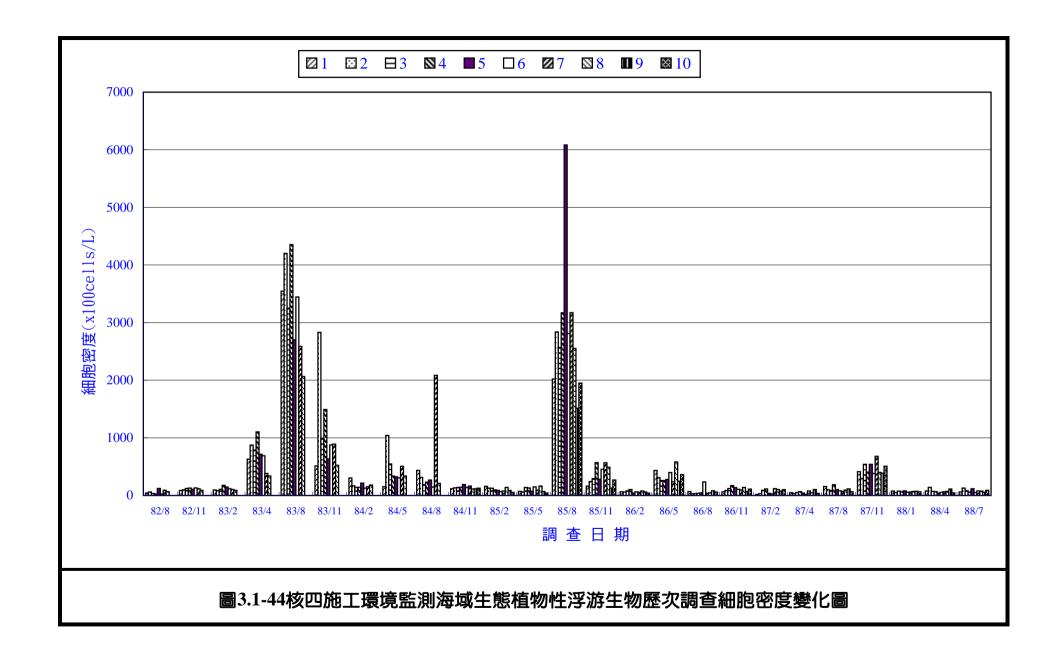


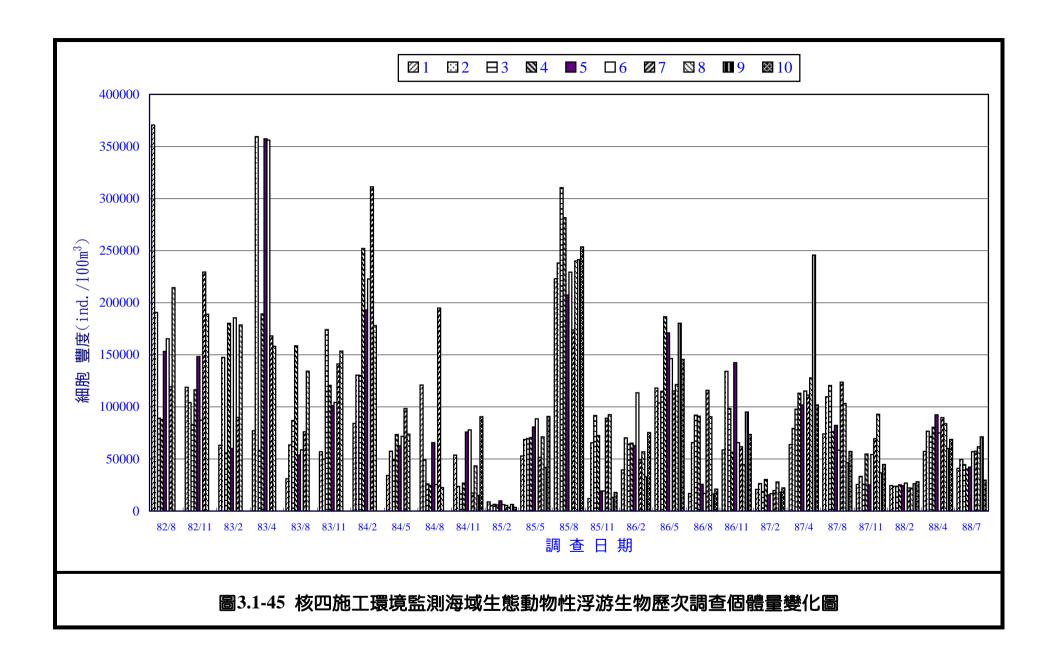


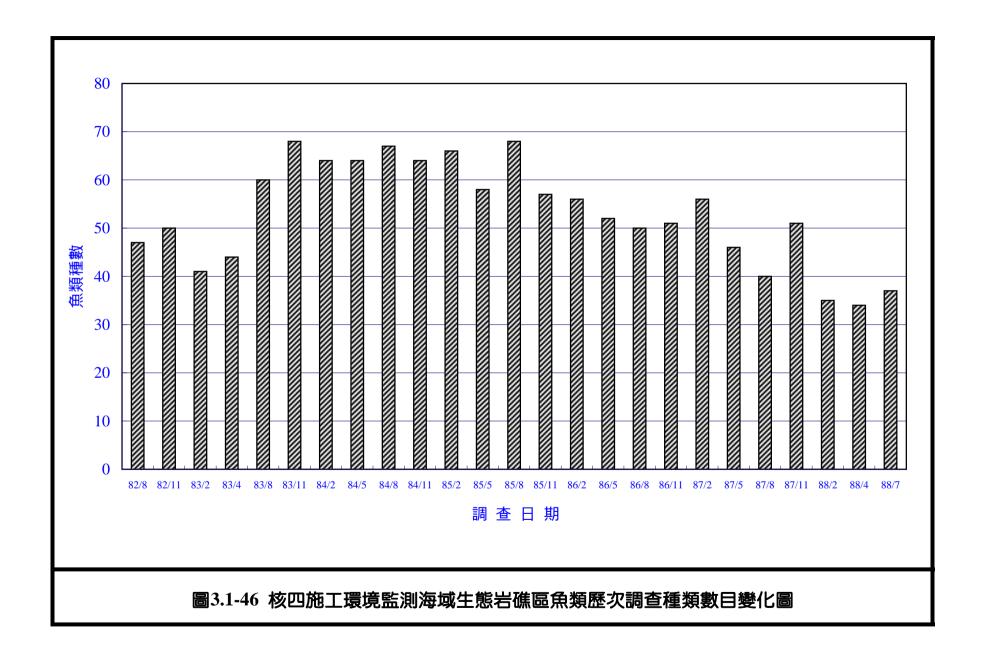


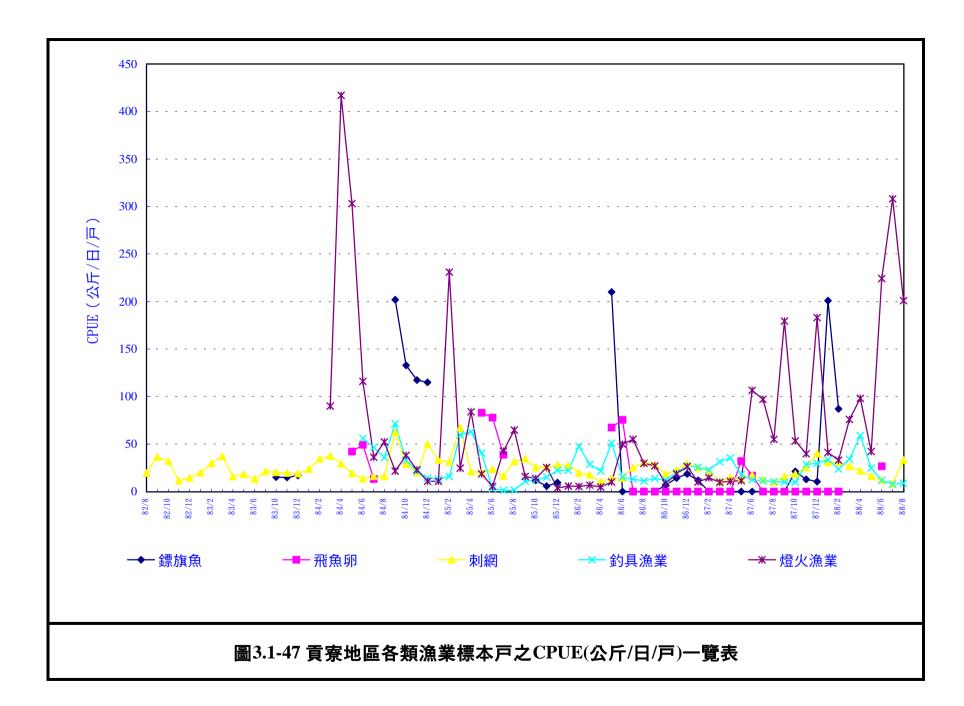


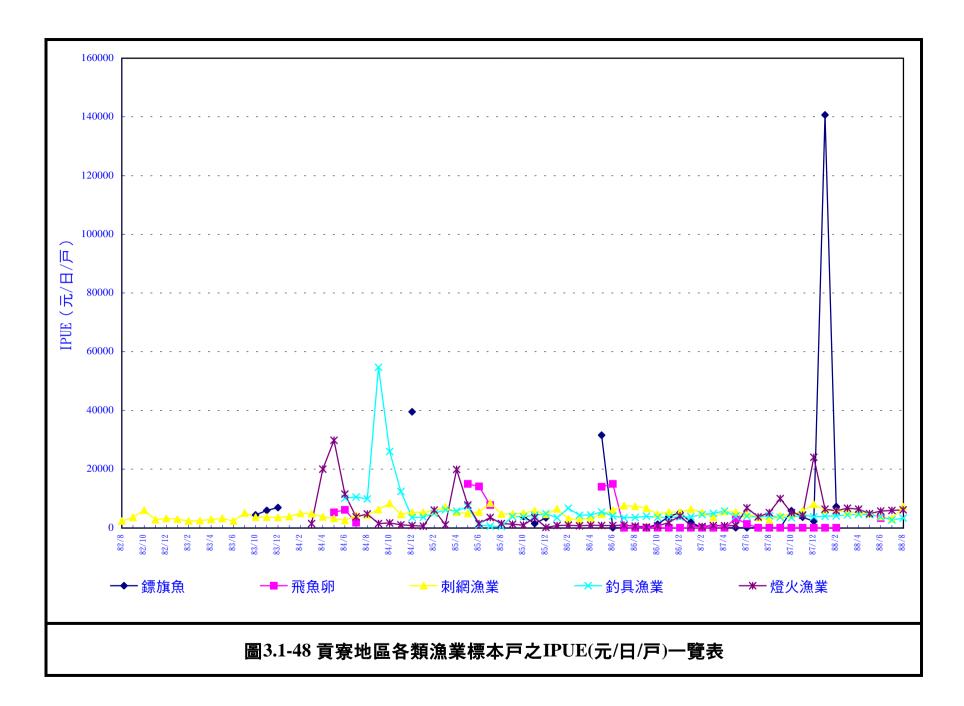


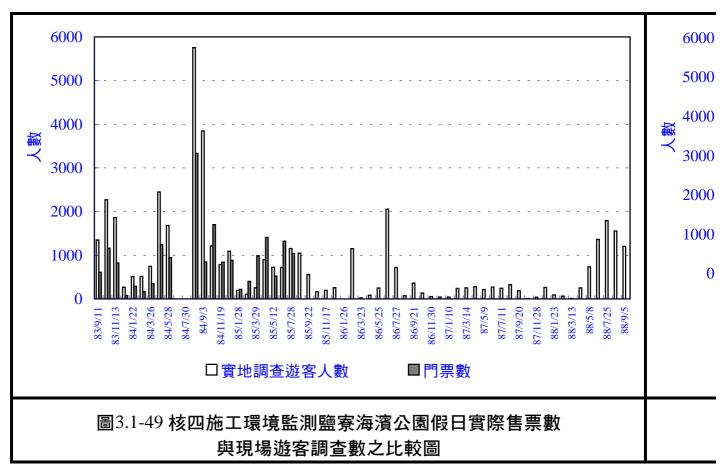


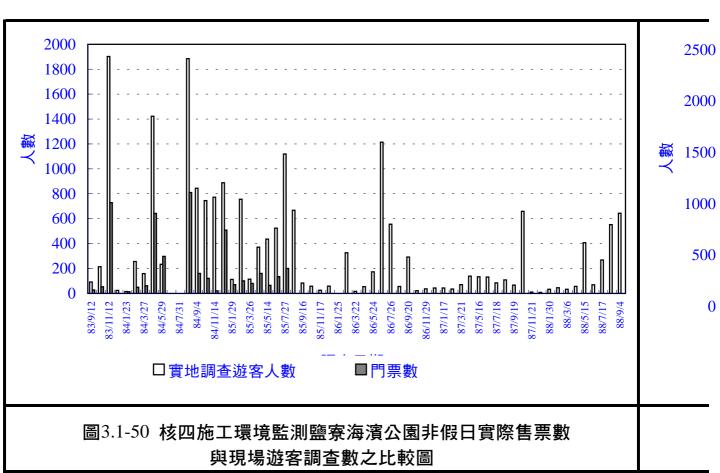












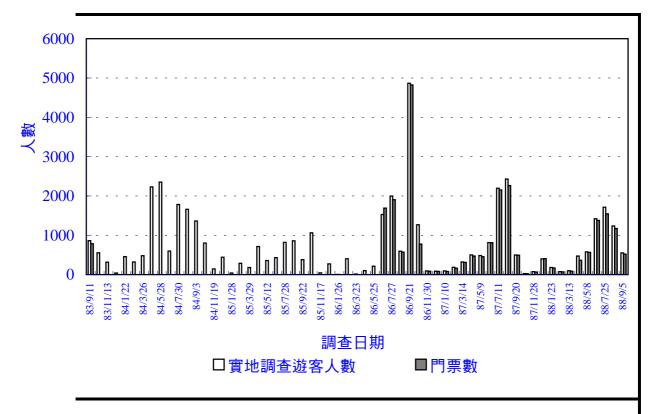


圖3.1-51 核四施工環境監測福隆海水浴場假日實際售票數 與現場遊客調查數之比較圖

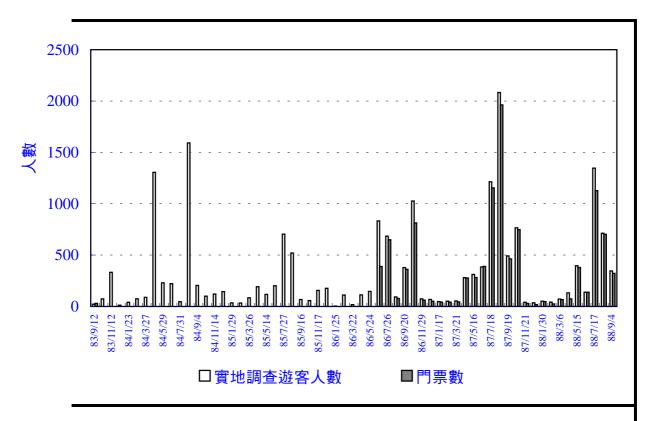


圖3.1-52 核四施工環境監測福隆海水浴場非假日實際售票數 與現場遊客調查數之比較圖

參考文獻

- 1. 行政院環境保護署,水質檢驗方法。
- 2. APHA(美國公共衛生協會), Standard Methods for the Examination of Waste Water, 18th ed., 1992。
- 3. 美國環保署, Test Methods for Evaluating Solid Waste, 3rd ed., 1986。
- 4. 台灣電力公司,核能四廠第一、二號機發電計畫環境影響評估報告,民國80年11 月。
- 5. 環保通訊社,環境法令,民國86年。
- 6. 高肇藩,衛生工程-給水(自來水)篇。
- 7. 李錦地等,台灣河川污染指標生物,台灣省水污染防治所,民國72年4月。
- 8. 鄭明修,石碇溪水域生態之研究,中央研究院動物研究所,民國82年3月。
- 9. 劉志仁等,東港溪流域水生物調查及水質等級評估,台灣環境保護,第六期(P:1~12),民國78年6月。
- 10. 交通部運輸研究所,台灣地區公路容量手冊,民國80年5月。
- 11. 胡美璜,台灣地區公路建設整體發展計畫構想芻議,71年4月再版。
- 12. 郭金棟,波浪預報圖解法,成大土木第11期,民國59年。
- 13. 行政院環保署,台灣地區地下水區水體分類與水質標準訂定可行性之研究,民國 80年6月。
- 14. 行政院環保署,環境音量標準,民國85年1月31日。
- 15. 行政院環保署,營建工程噪音調查及評估之研究,民國78年10月。
- 16. 臺灣電力股份有限公司,台北縣貢寮地區漁業之調查研究(第十五次報告),民國88年9月。
- 17. 江永棉, 台灣海藻簡介, 台灣立博物館, 民國79年
- 18. 中華民國溪流協會,東北角海岸風景特定區自然生態資源調查及監測,民國87年6 月

執行單位之認證資料

1.氣象觀測 台電公司電源勘測隊 2.海象調查 台電公司電源勘測隊 3.空氣品質監測 新紀工程顧問有環署環檢字第053號 周界中粒狀污染物	1、周界硫
2.海象調查 台電公司電源勘 測隊)、周界硫
測隊)、周界硫
, , , , , , , , , , , , , , , , , , ,)、周界硫
3.空氣品質監測 新紀工程顧問有 環署環檢字第 053 號 周界中粒狀污染物	、周界硫
限公司 氧化物、周界氮氧	化物
4.河川水文監測 台電公司電源勘	
測隊	
5.河川水質監測 中環科技公司 環署環檢字第 020 號 含本計畫水質監	測部分之
pH、水温、溶氧量	、金屬離
子、生化需氧量	、懸浮固
體、導電度、氨氮	、濁度及
油脂等項目及其何	也共計 41
項。	
6.廠區放流水監測 中環科技公司 環署環檢字第 020 號 同上	
7.海水水質監測 中環科技公司 環署環檢字第 020 號 同上	
8.地下水水質監測 中環科技公司 環署環檢字第 020 號 同上	
9.海岸地形調查 中山大學海洋環 學歷:美國西雅圖華盛頓大學土木工	
境學系薛憲文副程研究所博士	
教授 經歷:中山大學海洋環境學系副教授	
10.噪音與振動監 高雄醫學院盧天 學歷:中央密蘇里州立大學應用科學	
測 鴻副教授 研究所碩士	
經歷:私立高雄醫學院共同學科副教	
授 授	
中華民國音響學會候補理事	
11.河域生態監測 台灣大學動物系學歷:國立台灣大學動物系學士	
12.海域生態監測 經歷:國立台灣大學動物系教授	
13.交通流量監測 高雄醫學院盧天 學歷:中央密蘇里州立大學應用科學	
鴻副教授 研究所碩士	
經歷:私立高雄醫學院共同學科副教	
授	
中華民國音響學會候補理事	
14.漁業調查 台電公司委託海	
洋大學漁業系辦	
理	
15.海域漂砂調查 中山大學海洋環學歷:美國奧立崗州立大學土木工程	
境學系李忠潘教學系博士	
授經歷:中山大學海洋環境學系教授	
16.景觀遊憩調查 傑明工程顧問股	
份有限公司	

Ⅱ.1 氣象觀測

高、低二座氣象塔分別設置各項氣象之觀測儀器及觀測資料轉換器 (MTC),氣象資料經換算與數據化後,分別傳送至印表機及MIDAS電腦內集中儲存與處理,再依據不同時段(如:每日逐時、每月逐日及每年逐月)進行計算及統計分析。

Ⅱ.2 空氣品質監測

1.採樣儀器、機型及分析原理

本監測工作之監測方法及使用儀器說明如下。

監 測 項 目	監 測 之 方 法 與 使 用 之 監 測 儀 器
1.總懸浮微粒(TSP)	高量採樣法(NIEA A102.10A); 高量空氣採樣器 紀本公司 Model 122
2.氮氧化物(NOx)	氮氧化物分析儀自動檢驗法(NOx ANALYZER/NIEA A417.10T「化 學激光法」); API 200
3.非甲烷碳氫 化合物(NMHC)	「火焰離子燃燒檢知法」,紀本公司 Model 740 分析儀
4.一氧化碳(CO)	一氧化碳分析儀自動檢驗法(CO ANALYZER/NIEA A421.10T「紅外 光吸收光譜法」); DASIBI 3008
5.氣象	氣象監測設備自動測定(METEO EQUIPMENT); DANI 4000

2.採樣口之設置

(1)氣狀污染物

本監測工作係採取移動測定車方式進行採樣,即各項分析儀器均設置於採樣車上,氣體樣品進口處距離地面之高度約3公尺。

(2)懸浮微粒

高量採樣器設置之位置均架設於地面上。

3.測定步驟

氣狀及粒狀污染物之現場測定流程說明如后。

(1)氣狀污染物

①預處理工作

採樣分析前,各分析儀器需先經過暖機、零點校正及標準濃度校正等 三項工作。

A.暖機

所有儀器需暖機一至二小時左右,再觀察記錄器(Recorder)之曲線是否正常,如不正常則延長暖機時間。

B.零點校正

零點校正之工作中,一氧化碳分析儀是利用零氣體產生器之零氣體進行零點校正;氮氧化物分析儀則是利用氣體校正儀所提供之零濃度氣體(zero gas)進行零點校正,利用其前儀錶板之歸零調整鈕將輸出電壓調整至零點;非甲烷碳氫化合物是利用儀器本身之零氣體產生器所提供之零濃度氣體進行零點校正。

C.標準濃度校正 (span gas calibration)

標準濃度校正之工作方式,一氧化碳分析儀及非甲烷碳氫化合物分析儀是直接使用標準氣體鋼瓶,以氣體樣品之方式輸入分析儀中,直接進行校正;氮氧化物分析儀則是利用標準濃度氣體鋼瓶接通氣體校正儀,經稀釋後將之輸入分析儀中進行校正。

②採樣分析

以上三項步驟完成後,即可進行採樣分析工作。其分析步驟是 將離地 3 公尺以上之氣體輸入各分析儀中進行分析,分析結果將顯 示於記錄器上,記錄器是以連續式之 Recorder 與 CAMPBELL 之 Data logger (21X)同時進行記錄,以利於稽核比對; Data logger 記錄是計 算儲存每分鐘之平均值,再取小時平均後,即得各採樣污染物濃度 之小時平均值。

(2)總懸浮微粒 (TSP)

總懸浮微粒之測定方法主要是遵照行政院環保署環境檢驗所(77)環署檢字第07395號公告之高量採樣法進行採樣,其測定步驟包括濾紙準備、採樣及樣品分析等三個程序。

Ⅱ.3 噪音與振動監測

1.監測儀器

採用 RION SV-75 噪音計及 RION VM-52A 振動位準計測定。

2. 監測方式

(1)噪音

採用 A 加權位準 dB(A)及快動特性(FAST)之方式監測,取樣時距爲 1 秒鐘,每小時取樣次數爲 3,600 次,並記錄 1 次 Leq、Lx 及 Lmax,再 由連續 24 小時之 Leq 測值計算 L $_{\mathbb{P}}$ 、L $_{\mathbb{R}}$ 、L $_{\mathbb{R}}$ 及 Ldn,並繪出每小時 Leq 之變化圖。

(2)振動

採用相對人體感覺之振動位準(VL)方式取垂直方向監測,取樣時距爲 1 秒鐘,每小時取樣次數爲 3,600 次,並記錄 1 次 $Lveq^Lvx$ 及 Lvmax,再由連續 24 小時之 L_{V10} 測值計算 L_{V10} 、 $L_{\bar{\alpha}}$ 及 L_{V10} (24hr),並繪出每小時 L_{V10} 之變化圖。

(3)儀器設置方式

道路邊地區之監測儀器係設置於各測站所鄰之道路邊緣 1 公尺處, 道路邊如有建築物時,需距離建築物牆面線向外 1 公尺以上;監測高度 則距離地面約 1.2~1.5 公尺之間。

Ⅱ.4 交通流量監測

於各監測站以人工計數之方式記錄每小時各類型車輛之車流量,並計算每小時及每日之 P.C.U.(小客車當量數,即 P.C.U.=0.5×機車數+1×小型車數+2×大型車數+3×特種車數),繪製每小時各種車輛數及 P.C.U.之連續24小時監測變化圖。

Ⅱ.5 河川水文監測

1.水位

三處測站之河川水位量測係使用BDR320水壓式水位計進行自動連續 監測記錄。

2.河川橫斷面積

利用測深桿沿河川橫斷面,每隔適當距離量測水深一次,其施測斷 面爲流水部份之斷面(即潤濕斷面),將觀測結果繪製成橫斷面圖,即 可求得河川橫斷面積。

3.含砂量

以積深採樣法施測,利用DH-48採樣器於河道之垂直分割斷面上選擇 幾條測線(視河川流量而定)進行採樣,再以重量法求出砂重及水樣重, 經計算而求得含砂量。

4.流速

利用Price式流速計於河道之垂直分割斷面上進行流速觀測,石碇溪量測斷面之測點約爲2~4點,雙溪則爲5~8點,視量測當時之水面寬度與深度而定。

5.流量

利用Q=V×A之公式求得,其中Q為流量,V為河川流速,而A 為河川橫斷面積。

Ⅱ.6 河川水質及廠區放流水監測

河川水質分析主要係依據環保署公告之「水質檢驗方法」辦理,部份低濃度金屬則參照美國公共衛生協會等編印之「水與廢水標準檢驗方法」進行分析。有關河川水質監測之水質分析方法詳如 5.1 節所示。另工區放流水流量之測定,於小流量測站採用定時計量(即收集放流水一段時間,再以 Q/T 求得),於大流量測站則採流速法,以流速(V)×排水渠道水深橫斷面積(A)求得。

Ⅱ.7 地下水監測

1.記錄及分析方法

(1)地下水水位

利用水位量測尺測出地下水水面與監測井井頂之距離,再將監測井井頂標高減去上述測出之距離,即可求得該監測井之水位標高;將各季監測之資料整理分析,繪製各監測井之水位變化圖及地下水等水位線圖。

②地下水水質

地下水水質分析方法列如5.1節所示,分析方法主要依據行政院環保署公告之「水質檢驗方法」及環檢所最新公告之檢驗方法;重金屬砷項目則採用美國公共衛生協會等編印之「水與廢水標準檢驗方法」分析之;總有機碳則以美國環保署之方法分析。

地下水水質監測工作之品保與品管,其主要內容大致與河川水質之 品保與品管內容相同,僅採樣步驟及執行品管工作之內容有所差別。

(1)地下水的採集可分為下列三個步驟:

- ①洗井:洗井之目的在清除非井內原始地下水的外來物質,以期地下水水樣的檢測分析不受外來因素影響。洗井的工具可分爲汲取式、壓取式及空氣壓縮式抽水機,將依各監測井之狀況選用適當的工具。進行洗井應至少汲取3倍井水量,當每抽取固定體積的水樣,即測定其pH值及導電度,一直到相鄰兩個水樣的讀數相差在±10%以內,便視此時水質已達穩定狀態,即可開始進行取樣工作。
- ② 樣品採集:取的水樣須裝滿容器,以避免瓶內有多餘的空氣。

③現場分析及數據收集、記錄:洗井與取樣的過程中,採樣人員於現場以校正後的酸鹼值(pH)計與導電度計測試水樣,並將洗井記錄連同水溫、pH值及導電度等相關檢測讀數,記錄於地下水採樣記錄表上。

Ⅱ.8 河域生態監測

1.葉緑素甲

採取500ml之河水水樣,先以0.45μm之微細薄膜過濾,將濾紙以玻璃乾燥器乾燥後,置於冰箱中保存。水樣送回實驗室後,將乾燥濾渣溶於2-3毫升之90%丙酮溶液中,經超音波震盪器破壞浮游植物生物細胞後,置於冰箱內20小時,再經離心後以螢光度計測定其葉綠素甲之含量。

2.附著性藻類

以隨機取樣之方式,就各測站固定面積刮取水中石頭表面所附著之藻類,再以2~5%福馬林(Formalin)固定,攜回實驗室,以顯微鏡進行觀察鑑定工作,並估算其數量。

3.浮游植物

於各測站取500ml水樣,以5%福馬林(Formalin)固定後,攜回實驗室,利用真空馬達抽氣,過濾於0.8μm之過濾膜上,再以顯微鏡觀察,鑑定浮游植物之種類並計數之,將鏡檢計數所得資料,分析各測站,各季節浮游植物生物量之變化情形。

4.浮游動物

以浮游生物網(網目48μm)採樣,所採得之標本,現場以 5%福 馬林(Formalin)固定,攜回實驗室,以顯微鏡觀察,鑑定其種類並計數 之。

5.水生昆蟲

在各測站,使用昆蟲採集網,取定量面積將棲息於石塊之水生昆蟲 洗入網中,收集後以5%之甲醛固定,攜回實驗室以顯微鏡觀察鑑定其種 類及計數。

6. 魚類與無脊椎動物

於各測站各施放六個蝦籠,以混合魚餌拌米飯爲誘餌,放置隔夜後 收集籠中獲物,攜回實驗室加以鑑定種類及計數,此外,並以手抄網或 徒手採集所發現之水生動物、魚類,並依實際狀況,配合網捕或其他適 當方法及收集過去之記錄,做成較完整之資料。

Ⅱ.9 海域水質監測

1.分析方法

海域水質分析係依環保署公告之「水質檢驗方法」辦理,如分析項目未列於環保署公告之方法中,則採用美國公共衛生協會等編印之「水 與廢水標準檢驗方法」辦理。有關海域水質之分析方法詳見5.1節所示。

2.品保品管執行內容

有關海域水質監測工作之品保品管執行內容,大致與河川水質之品 保與品管計畫相同,僅採樣步驟及執行品管工作之內容略有差異,茲就 此二部份說明如下:

- (1)採樣:取樣前,事先瞭解漲退潮之時間以決定出海採樣時間
- (2)取樣時先以欲採水樣沖洗2、3次,再採取海水表層或底層之水樣,並立即進行水樣處理工作,現場量測之項目(如pH值、水溫)應於量測後立即記錄在採樣監控表中。

Ⅱ.10 海域生態監測

1.環境因子

於各測站分別採集表層、水面下3公尺及底層(水面下10公尺)之水 樣進行分析,其分析方法說明如下:

- (1)硝酸鹽(Nitrate):馬錢子鹼比色法(NIEA W417.50A)。
- (2)亞硝酸鹽(Nitrite): 分光光度計法(NIEA W418.50T)。
- (3)磷酸鹽(Phosphate):維生素丙比色法(NIEA W427.50A)。
- (4)矽酸鹽(Silicate): UV比色法(APHA 4500-Si)。
- (5)總氮(TN):納氏比色法(NIEA W416.50A)。
- (6) 總磷(TP): 維生素丙比色法(NIEA W427.50A)。
- (7)葉綠素甲:於採樣現場取2公升之海水水樣與1毫升之過飽和碳酸鎂溶液混合,先以孔隙0.45μm之微細薄膜過濾,將濾過物質以玻璃乾燥器乾燥後,置入冰箱中保存。水樣送回實驗室後,將乾燥濾渣溶於2-3毫升之90%丙酮溶液中,經超音波振盪器破壞植物性浮游生物細胞後,置於冰箱內20小時,再經過離心後以螢光光度計測定其葉綠素甲之含量。

2.生物因子

(1)基礎生產力

各測站各水層採取約1公升之海水,攜回實驗室,分裝於兩個容積 均為500ml的明瓶與暗瓶中,使用同位素碳十四之Tank Method,以α/ β counting system測定,並計算各測站區域之海水基礎生產力。

(2)植物性浮游生物

於各測站採取不同深度之海水約1公升裝入塑膠瓶中,同時加入1%福馬林固定液,採集後攜回實驗室,先用微細薄膜(millipore filter, 0.8 µ m)過濾,置於乾燥箱中乾燥後,加數滴Carallu's immersion oil於膜上,使其透明,並以光學顯微鏡觀察單位面積上浮游植物之數量及種類,並予以換算爲單位體積(公升)海水中之細胞量(MC Nabb, 1960; Moore, 1983)。

③動物性浮游生物

採用北太平洋標準浮游生物網(NORPAC Standard Plankton Net;網口直徑45cm,網長180cm,網目0.33mm×0.33mm)於各測站進行水平及垂直分層採集,水平採集係以定速(1m/sec)拖曳3分鐘之方式進行採集作業,網口中央繫有流速計(Flow meter),以計算通過網口之水量,採獲之標本先在現場以5%之福馬林固定,攜回實驗室鑑定種類、稱重與計量,再由流速計轉換個體量(Abundance; ind./1,000m³)與生物體量(Biomass; g/1,000m³),並分析動物性浮游生物之水平與垂直分佈及季節性變化。

(4)大型藻類

於潮間帶二測站採取一定面積(0.25平方公尺)之藻類,依據相關台灣常見藻類圖鑑鑑定其種類並記錄其相對覆蓋量。

⑤底棲無脊椎動物

潮間帶於岩岸或沙岸之高、中及低潮位,採取一定體積(50×50×20立方公分)底質內之底棲生物;亞潮帶於礁石區以潛水方式調查,沙質帶則以Naturalist's dredge底棲生物採集拖網進行5分鐘定速之採集調查。各測站採集所得之樣本,再鑑定其種類並計算數量。

(6)珊瑚

於水深5~30公尺範圍選擇適當之區域,利用潛水調查珊瑚種類、 分佈及覆蓋面積,調查過程並拍照存檔以供對照瞭解。

(7) 魚類

仔稚魚之調查則以Maruchi-D型稚魚網在水面下2~4公尺處拖曳5~10分鐘,記錄仔稚魚之種類及數量。此外,在珊瑚礁較繁茂之地區採潛水調查,記錄魚種、尾數及其生態棲所習性等。

Ⅱ.11 漁業調查

1.漁業生產調查統計及經濟分析

本年度調查爲 1994 年度計畫的延續,配合由當地漁會所提供樣本戸資料進行實地訪查,1999 年漁撈戸及九孔養殖戸的資料收集工作爲二個月收集一次。總計 1999 年 6 月~1999 年 8 月間,每月發出問卷數爲 77份,其中漁撈戸爲 60 份,養殖戸爲 17 份。漁撈戸實際調查地區有龍洞、

和美、美灩山、澳底、龍門、福隆、卯澳、馬崗等地區,九孔養殖戸實際調查地區有龍洞、和美、美灩山、澳底、福隆、卯澳、馬崗等地區,各地區問卷數及組成如下: (卯澳、龍門自 1996 年起已無養殖戸問卷調查)

	龍洞	和美	美豔山	澳底	龍門	福隆	卯澳	馬崗
漁撈戸	8	8	7	8	8	7	7	7
九孔養殖戸	4	2	2	3	0	4	0	2

2.漁業活動環境及其時空配置

本次調查之內容在分析漁場環境及各漁業活動狀況之時空變化,其中漁場空間環境的調查係參考中華民國海軍測量局之海圖及內政部營建署之地形圖,輔以 Biosonic 之雙波束聲探計測系統(ESP)、全球衛星定位系統(GPS)、航海及海圖作業輔助系統(Integrate Navigation & Charting System; SEAPLOT)之連結整合,進行漁場地形的測繪。漁場環境則利用海洋大學之高解析度衛星遙測(HRPT)作爲工具,全面連續觀測本海域水溫及海流之動態,配合海研一、二號相關之海上觀測及報告來彙整。

調查方法包括用縣政府漁船登記執照紀錄、漁船噸數資料等全面性 大樣本之漁業活動調查,並以抽樣式之標本戸實地調查檢驗,將各漁船 出海之時數及漁獲魚種及量之時間序列資料,利用頻譜分析來考察漁民 季節性漁業之組成。並且計算燈火漁業之漁獲量、漁獲金額、單位努力 漁獲量(CPUE)及單位努力漁獲金額(IPUE)的變化。

3.刺網漁業、飛魚卵漁業、鏢旗魚漁業及釣具漁業

本項工作之調查方法包括釣具漁業活動動態的實地查訪、文獻蒐集 及作業現況調查。其進行方法及步驟如下:

- (1)以訪談方式調查各漁業之漁具、漁法及漁場分布。
- (2)設立標本船(戸),並定期派員蒐集下列資料
 - ①作業漁場
 - ②作業時間
 - ③漁獲量及漁獲金額
- (3)將標本船實際作業資料做整理分析。

4. 燈火漁業(棒受網及小型巾著網漁業)

本季以調查燈火漁業作業動態爲主,另外並建立本地區之燈火漁業經營現況,調查內容主要包括船位、作業漁場之海況、漁撈成本及漁獲狀況等相關資料。

5. 仔魚漁業、休間漁業及沿岸採捕業

本項工作主要針對龍洞至三貂角沿海地區之 仔魚漁業、休閒漁業 及沿岸採捕業之漁業生產、活動動態、資源分佈與季節變動及漁業效益 等進行調查分析,其工作方法包括建立及增加各項漁業之標本戸,及各 項漁業生產者基本資料的建檔工作,另一方面則針對各項漁業之漁業生 產、活動動態、資源分布等進行實地訪查及文獻蒐集。

7.九孔及其他養殖漁業

本季工作主要調查貢寮地區九孔養殖之產量、產值、澳底附近養殖 區之海水水質監測及九孔活存率調查三項,其方式說明如下:

(1)產量、產值

問卷與實地訪查的方式,進行標本戸之九孔產量、產值的調查。同時將標本戸調查結果,以統計方法推估此時期整個貢寮地區九孔的總產量與總產值。

(2)活存率

於選定之標本戸中進行實驗,觀察標本戸九孔的成長情形,並紀錄 活存個數與平均重量,然後計算其活存率與成長速率。活存率調查中, 各層籃內的九孔數量乃根據養殖業者經驗的最適生長數量進行實驗,分 成多種密度來做比較。

③水質監測

將顧問科技公司所做的水質監測資料做一簡單的分析,其所測得的 資料分為南北兩站,站址的選取是以澳底為中心,於南北兩端最靠近九 孔養殖廠附近各設置一站,以監測九孔養殖區附近海水之水質以作為背 景資料。藉以觀察兩站址間海水水質是否不同,並分析單月份是否有週 期性的關係。

Ⅱ.12 海象調查

1.海域溫度與鹽度縱深剖面調查

租用有絞車(winch)之大型漁船,於選定測站利用CTD(SEACAT型號SBE 19-03)進行調查。

2.漂流浮標追蹤調查

仿製中研院環科會所設計之雙葉浮標進行觀測,其下端纜繩可調整長度以施測不同深度之流況。而浮標流跡係利用船隻及其上所安裝之全球衛星定位系統(GPS)進行追蹤定位,約每30分鐘記錄一次浮標位置。

3.潮位與水溫調查

潮位調查係採用HANDAR型號555C-1 Logger/449A/B Sensor進行自動記錄,水溫調查則採用AANDERAA型號TR-2進行自動記錄。

Ⅱ.13 景觀與遊憩活動調查

1.遊客人數實地調查

遊客人數實地調查工作係於每個月調查二日,一日選在假日,另一日即爲非假日。調查方法係採人工計數方式,分別在鹽寮海濱公園入口處的停車場及福隆海水浴場之主要入口處(即售票處)記錄遊客人數,二個據點之調查時間均從 08:00 至 18:00。

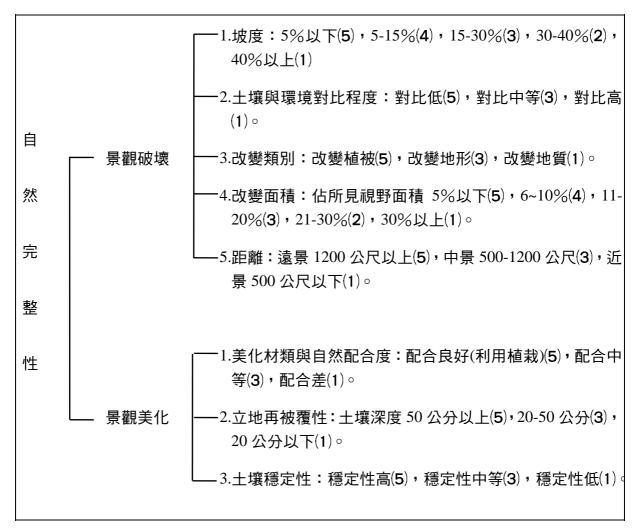
2.門票數分析

本季派員前往東北角海岸國家風景區管理處、台鳳股份有限公司福 隆海水浴場管理處及龍門渡假中心,分別蒐集鹽寮海濱公園、福隆海水 浴場及龍門渡假中心之門票發售統計資料,以便進行相關之分析比較。

3.景觀調查

研究人員每月前往現場調查核四廠址周邊之環境景觀變化情形,並 以照片記錄七個調查點的景觀變化,並藉由自然完整性之評分表(如表 II.13-1)進行評估。此評分表係參考相關景觀調查評估方法,以及針對核四廠開發行爲所可能對景觀所造成之影響加以歸納而建立;由於核四廠廠址原爲一處自然環境,故本評估方式著重在開發過程對自然完整性之破壞程度,並將之分爲景觀破壞與景觀美化兩大部份;景觀破壞方面主要之評估項目包括(1)對坡度的破壞程度,(2)開挖所裸露之土壤與周圍環境之對比,(3)改變景觀的類別,(4)開發面積佔視野面積的多寡及(5)開發場址對視覺之衝擊程度。在景觀美化方面主要與植生有關,其評估之項目有(1)美化所使用之材質與周圍自然環境配合的程度,(2)立地再被覆性及(3)土壤穩定的程度。自然完整性評分值之範圍從最低分 8 分至最高分40 分,其中得分在 30~40 分之間歸類爲高自然完整性,19~29 分之間歸類爲中自然完整性,8~18 分之間則屬低自然完整性。

Ⅱ.14 海域漂砂


1.採樣過程

2.(1)海域採樣包括下列三個步驟:

①定位系統

利用美國製(Ashtech GPS)之 DGPS 法,首先設定一已知座標位置之固定站(基站),並透過 DGPS 法將基站所接收到的資料與現有已知座標位置做差分校正,求取校正值,此校正值可利用無線電傳至移動站(或航行器)進行即時性位置修正(REAL-TIMED GPS),以提供定位精度。

表 || .13-1 核四施工環境監測自然完整性之評分表

註:1.總評值之節圍 8~40。

- 2.()之數字表得分數。
- 3. 總 得 分 8~18 分 屬 低 自 然 完 整 性。
- 4.總得分 19~29 分屬中自然完整性。
- 5.總得分 30~40 分屬高自然完整性。

②導航系統

利用Hypack軟體與DGPS連線,其可在螢幕上顯示多項資訊以供導航及計畫航線,並可以圖形顯示移動站(航行船)之所在位置,以提供迅速便利操作。

③採樣方法

海域採樣乃利用前述之定位及導航系統將採樣船固定在測站位置上,採用美國製之WILDCO橫式採水器及底質採砂器,分別採取 2~3公升之水樣及0.5~1公斤之砂樣供分析之用。

(2)海灘採樣

海灘採樣係利用美國製之Ashtech GPS全球衛星定位儀定出測站位置,再分別採取高低潮線之表層砂樣各1~2公斤,供分析之用。

2.粒徑分析之方法(Grain size analysis)

(1)方法:

傳統上爲求得砂土顆粒直徑及其分佈情況而採用人工方法來加以分析,主要的分析步驟依粒徑大小而分爲篩分析(Sieve Analysis)及比重計分析(Hydrometer Analysis)。篩分析主要針對粒徑大於74μm(No.200篩)之土粒,而比重計分析則針對粒徑小於74μm之土粒,也就是一般稱爲粉土(silt)之土粒。而本計畫中則採用更先進的方法,來替代傳統的比重計分析方法,採用Coulter LS 100雷射顆粒度分析儀針對較小的土粒來做粒度分析。其步驟爲:選取適當數量顆粒度小於0.85mm之土粒樣品,加入適量乾淨水充分混合後置於雷射儀器上,依儀器操作使用說明順序操作後可得初始分析結果(Raw Data),加以整理

後可得如附錄XI之結果。至於粒度大於0.85mm之土粒則需進行一般篩分析(Sieve Analysis)來了解其粒度分佈情形。

(2)結果:

分析結果可分別以圖及表來表示之,包含:

- ①各種粒徑大小值之附表(詳附錄Ⅳ)。
- ②粒徑分佈圖(詳附錄Ⅳ)。

其中附錄之表中有有效粒徑(effective diameter) d_{10} ;中值粒徑 (median diameter) d_{50} ;平均粒徑(mean diameter) d_m 以及 d_{25} 、 d_{75} 、 d_{90} 等 各粒徑值,縱軸代表爲對應各種不同粒徑之顆粒相當於過篩之累積量;橫軸代表爲粒徑之大小值。圖中曲線往右移,則其相對之粒徑分佈值(或稱級配)較大,反之則小。

電子測距經緯儀精度測試表

			PTS II-05所測		
PTS II-05所測二	二點位之實	距離差	二點位高程差	二點位之實	高程差
點位距離(m)	際距離(m)	值(m)	(m)	際高程差(m)	值(m)
80.054	80.050	0.004	0.014	0.016	0.002
80.054	80.050	0.004	0.012	0.016	0.004
80.053	80.050	0.003	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.055	80.050	0.005	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.055	80.050	0.005	0.012	0.016	0.004
80.055	80.050	0.005	0.014	0.016	0.002
80.055	80.050	0.005	0.014	0.016	0.002
80.054	80.050	0.004	0.014	0.016	0.002
80.054	80.050	0.004	0.014	0.016	0.002
80.053	80.050	0.003	0.014	0.016	0.002
80.054	80.050	0.004	0.012	0.016	0.004
80.053	80.050	0.003	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.053	80.050	0.003	0.014	0.016	0.002
80.055	80.050	0.005	0.012	0.016	0.004
80.053	80.050	0.003	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.054	80.050	0.004	0.012	0.016	0.004
80.054	80.050	0.004	0.014	0.016	0.002
80.054	80.050	0.004	0.014	0.016	0.002
80.053	80.050	0.003	0.014	0.016	0.002
80.054	80.050	0.004	0.014	0.016	0.002
80.054	80.050	0.004	0.012	0.016	0.004
80.055	80.050	0.005	0.016	0.016	0.000
80.054 80.050		0.004	0.014 0.016		0.002
測值與時際距離差值之最小值		0.003	測值與時際高差差值之最小值		0.000
測值與時際距離差值之最大值		0.005	測值與時際高差差		0.004
測值與時際距離差		0.004	測值與時際高差差		0.003
測值與時際距離差	值之標準差	0.001	測值與時際高差差	E值之標準差	0.001

GPS即時處理資料精度測試表

GPS即時處	理點位座標		點位座標	GPS結果與已
E	N	E	N	知點位距離差
173241.30	2502927.53	173241.50	2502927.38	0.25
173241.59	2502927.89	173241.50	2502927.38	0.52
173241.59	2502927.96	173241.50	2502927.38	0.58
173241.71	2502927.81	173241.50	2502927.38	0.48
173241.71	2502927.74	173241.50	2502927.38	0.42
173241.74	2502927.84	173241.50	2502927.38	0.52
173241.70	2502927.82	173241.50	2502927.38	0.48
173241.63	2502927.82	173241.50	2502927.38	0.46
173241.61	2502927.72	173241.50	2502927.38	0.36
173241.54	2502927.79	173241.50	2502927.38	0.41
173241.54	2502927.73	173241.50	2502927.38	0.35
173241.48	2502927.74	173241.50	2502927.38	0.36
173241.48	2502927.86	173241.50	2502927.38	0.48
173241.46	2502927.79	173241.50	2502927.38	0.41
173241.54	2502927.61	173241.50	2502927.38	0.23
173241.74	2502927.81	173241.50	2502927.38	0.49
173241.85	2502927.77	173241.50	2502927.38	0.52
173241.60	2502927.55	173241.50	2502927.38	0.20
173241.45	2502927.97	173241.50	2502927.38	0.59
173241.58	2502927.70	173241.50	2502927.38	0.33
173241.42	2502927.84	173241.50	2502927.38	0.46
173241.50	2502927.92	173241.50	2502927.38	0.54
173241.52	2502927.82	173241.50	2502927.38	0.44
173241.50	2502927.82	173241.50	2502927.38	0.44
173241.51	2502927.87	173241.50	2502927.38	0.49
173241.52	2502927.80	173241.50	2502927.38	0.42
173241.55	2502927.76	173241.50	2502927.38	0.38
173241.54	2502927.78	173241.50	2502927.38	0.40
173241.58	2502927.78	173241.50	2502927.38	0.41
173241.57	2502927.76	173241.50	2502927.38	0.38
173241.52	2502927.68	173241.50	2502927.38	0.30
173241.53	2502927.72	173241.50	2502927.38	0.34
173241.49	2502927.73	173241.50	2502927.38	0.35
173241.40	2502927.71	173241.50	2502927.38	0.34
173241.48	2502927.71	173241.50	2502927.38	0.33
173241.50	2502927.70	173241.50	2502927.38	0.32
173241.50	2502927.71	173241.50	2502927.38	0.33
173241.50	2502927.70	173241.50	2502927.38	0.32
173241.47	2502927.71	173241.50	2502927.38	0.33
173241.48	2502927.73	173241.50	2502927.38	0.35
173241.47	2502927.71	173241.50	2502927.38	0.33

173241.46 2502927.73 173241.50 2502927.38 0.35 173241.44 2502927.76 173241.50 2502927.38 0.35 173241.36 2502927.74 173241.50 2502927.38 0.40 173241.37 2502927.74 173241.50 2502927.38 0.36 173241.36 2502927.75 173241.50 2502927.38 0.36 173241.38 2502927.70 173241.50 2502927.38 0.39 173241.31 2502927.72 173241.50 2502927.38 0.39 173241.31 2502927.67 173241.50 2502927.38 0.39 173241.32 2502927.67 173241.50 2502927.38 0.37 173241.34 2502927.67 173241.50 2502927.38 0.36 173241.34 2502927.68 173241.50 2502927.38 0.31 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.03 2502927.73 173241.50 2502927.38 0.48 173241.03 2502927.73 17324			1	I	I
173241.44 2502927.73 173241.50 2502927.38 0.35 173241.36 2502927.76 173241.50 2502927.38 0.40 173241.39 2502927.72 173241.50 2502927.38 0.36 173241.36 2502927.75 173241.50 2502927.38 0.39 173241.28 2502927.70 173241.50 2502927.38 0.39 173241.31 2502927.71 173241.50 2502927.38 0.39 173241.32 2502927.71 173241.50 2502927.38 0.39 173241.33 2502927.67 173241.50 2502927.38 0.36 173241.34 2502927.65 173241.50 2502927.38 0.36 173241.12 2502927.68 173241.50 2502927.38 0.31 173241.13 2502927.68 173241.50 2502927.38 0.41 173241.12 2502927.71 173241.50 2502927.38 0.48 173241.13 2502927.73 173241.50 2502927.38 0.50 173241.10 2502927.73 17324	173241.45	2502927.72	173241.50	2502927.38	0.34
173241.36 2502927.76 173241.50 2502927.38 0.40 173241.39 2502927.74 173241.50 2502927.38 0.37 173241.37 2502927.72 173241.50 2502927.38 0.36 173241.36 2502927.70 173241.50 2502927.38 0.39 173241.31 2502927.72 173241.50 2502927.38 0.39 173241.31 2502927.67 173241.50 2502927.38 0.39 173241.32 2502927.67 173241.50 2502927.38 0.36 173241.34 2502927.65 173241.50 2502927.38 0.36 173241.12 2502927.69 173241.50 2502927.38 0.31 173241.12 2502927.69 173241.50 2502927.38 0.41 173241.13 2502927.76 173241.50 2502927.38 0.41 173241.12 2502927.71 173241.50 2502927.38 0.41 173241.13 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 17324		2502927.73			
173241.39 2502927.74 173241.50 2502927.38 0.36 173241.36 2502927.75 173241.50 2502927.38 0.36 173241.36 2502927.75 173241.50 2502927.38 0.39 173241.31 2502927.70 173241.50 2502927.38 0.38 173241.33 2502927.71 173241.50 2502927.38 0.37 173241.28 2502927.67 173241.50 2502927.38 0.36 173241.28 2502927.65 173241.50 2502927.38 0.36 173241.34 2502927.68 173241.50 2502927.38 0.31 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.01 2502927.71 173241.50 2502927.38 0.48 173241.02 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.71 173241.50 2502927.38 0.61 173241.05 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 17324	173241.44	2502927.73		2502927.38	0.35
173241.37 2502927.72 173241.50 2502927.38 0.36 173241.36 2502927.75 173241.50 2502927.38 0.39 173241.28 2502927.70 173241.50 2502927.38 0.38 173241.31 2502927.71 173241.50 2502927.38 0.39 173241.28 2502927.67 173241.50 2502927.38 0.37 173241.24 2502927.65 173241.50 2502927.38 0.36 173241.34 2502927.68 173241.50 2502927.38 0.31 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.13 2502927.71 173241.50 2502927.38 0.48 173241.03 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.43 173241.21 2502927.74 17324	173241.36	2502927.76	173241.50	2502927.38	0.40
173241.36 2502927.75 173241.50 2502927.38 0.39 173241.28 2502927.70 173241.50 2502927.38 0.38 173241.31 2502927.72 173241.50 2502927.38 0.39 173241.33 2502927.67 173241.50 2502927.38 0.36 173241.34 2502927.65 173241.50 2502927.38 0.31 173241.31 2502927.68 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.41 173241.03 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.23 2502927.71 17324	173241.39	2502927.74	173241.50	2502927.38	0.37
173241.28 2502927.70 173241.50 2502927.38 0.38 173241.31 2502927.72 173241.50 2502927.38 0.39 173241.33 2502927.67 173241.50 2502927.38 0.37 173241.28 2502927.65 173241.50 2502927.38 0.36 173241.31 2502927.69 173241.50 2502927.38 0.41 173241.12 2502927.69 173241.50 2502927.38 0.48 173241.12 2502927.71 173241.50 2502927.38 0.48 173241.03 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.50 173241.05 2502927.73 173241.50 2502927.38 0.58 173241.05 2502927.73 173241.50 2502927.38 0.61 173241.21 2502927.74 173241.50 2502927.38 0.57 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.73 17324	173241.37	2502927.72	173241.50	2502927.38	0.36
173241.31 2502927.72 173241.50 2502927.38 0.39 173241.33 2502927.67 173241.50 2502927.38 0.37 173241.28 2502927.65 173241.50 2502927.38 0.36 173241.34 2502927.68 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.48 173241.12 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.50 173241.05 2502927.73 173241.50 2502927.38 0.50 173241.05 2502927.73 173241.50 2502927.38 0.58 173241.05 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 17324	173241.36	2502927.75	173241.50	2502927.38	0.39
173241.33 2502927.71 173241.50 2502927.38 0.36 173241.28 2502927.67 173241.50 2502927.38 0.36 173241.34 2502927.65 173241.50 2502927.38 0.31 173241.21 2502927.68 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.48 173241.12 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.50 173240.99 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.61 173241.21 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.71 173241.50 2502927.38 0.43 173241.22 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.24 2502927.76 17324	173241.28	2502927.70	173241.50	2502927.38	0.38
173241.28 2502927.67 173241.50 2502927.38 0.36 173241.34 2502927.65 173241.50 2502927.38 0.31 173241.21 2502927.68 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.48 173241.03 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.58 173240.99 2502927.74 173241.50 2502927.38 0.61 173241.20 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.27 2502927.76 173241.50 2502927.38 0.45 173241.26 2502927.76 17324	173241.31	2502927.72	173241.50	2502927.38	0.39
173241.34 2502927.65 173241.50 2502927.38 0.31 173241.21 2502927.68 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.48 173241.12 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.58 173240.99 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.61 173241.21 2502927.70 173241.50 2502927.38 0.57 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.42 173241.22 2502927.77 173241.50 2502927.38 0.45 173241.24 2502927.76 173241.50 2502927.38 0.47 173241.26 2502927.78 17324	173241.33	2502927.71	173241.50	2502927.38	0.37
173241.21 2502927.68 173241.50 2502927.38 0.41 173241.13 2502927.69 173241.50 2502927.38 0.48 173241.02 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.58 173240.99 2502927.74 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.24 2502927.76 173241.50 2502927.38 0.45 173241.25 2502927.79 173241.50 2502927.38 0.47 173241.27 2502927.82 17324	173241.28	2502927.67	173241.50	2502927.38	0.36
173241.13 2502927.69 173241.50 2502927.38 0.48 173241.12 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.58 173240.99 2502927.74 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.42 173241.22 2502927.73 173241.50 2502927.38 0.44 173241.24 2502927.76 173241.50 2502927.38 0.45 173241.25 2502927.79 173241.50 2502927.38 0.47 173241.27 2502927.82 173241.50 2502927.38 0.41 173241.24 2502927.78 17324	173241.34	2502927.65	173241.50	2502927.38	0.31
173241.12 2502927.71 173241.50 2502927.38 0.50 173241.03 2502927.73 173241.50 2502927.38 0.58 173240.99 2502927.74 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.30 2502927.71 173241.50 2502927.38 0.38 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.42 173241.27 2502927.77 173241.50 2502927.38 0.44 173241.22 2502927.76 173241.50 2502927.38 0.45 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.47 173241.24 2502927.88 173241.50 2502927.38 0.49 173241.24 2502927.74 17324	173241.21	2502927.68	173241.50	2502927.38	0.41
173241.03 2502927.73 173241.50 2502927.38 0.58 173240.99 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.30 2502927.71 173241.50 2502927.38 0.38 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.42 173241.22 2502927.77 173241.50 2502927.38 0.44 173241.22 2502927.76 173241.50 2502927.38 0.45 173241.23 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.24 2502927.78 173241.50 2502927.38 0.40 173241.24 2502927.74 17324	173241.13	2502927.69	173241.50	2502927.38	0.48
173240.99 2502927.73 173241.50 2502927.38 0.61 173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.30 2502927.71 173241.50 2502927.38 0.38 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.27 2502927.77 173241.50 2502927.38 0.45 173241.22 2502927.76 173241.50 2502927.38 0.45 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.24 2502927.78 173241.50 2502927.38 0.40 173241.26 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 17324	173241.12	2502927.71	173241.50	2502927.38	0.50
173241.05 2502927.74 173241.50 2502927.38 0.57 173241.21 2502927.70 173241.50 2502927.38 0.43 173241.30 2502927.71 173241.50 2502927.38 0.38 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.27 2502927.77 173241.50 2502927.38 0.45 173241.26 2502927.76 173241.50 2502927.38 0.47 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.74 17324	173241.03	2502927.73	173241.50	2502927.38	0.58
173241.21 2502927.70 173241.50 2502927.38 0.43 173241.30 2502927.71 173241.50 2502927.38 0.38 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.27 2502927.76 173241.50 2502927.38 0.45 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.47 173241.27 2502927.82 173241.50 2502927.38 0.47 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 17324	173240.99	2502927.73	173241.50	2502927.38	0.61
173241.30 2502927.71 173241.50 2502927.38 0.38 173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.27 2502927.76 173241.50 2502927.38 0.45 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.47 173241.27 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.78 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.49 173241.28 2502927.74 173241.50 2502927.38 0.43 173241.29 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.65 173241.50 2502927.38 0.44 173241.29 2502927.67 17324	173241.05	2502927.74	173241.50	2502927.38	0.57
173241.23 2502927.71 173241.50 2502927.38 0.42 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.27 2502927.76 173241.50 2502927.38 0.45 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.78 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.49 173241.28 2502927.71 173241.50 2502927.38 0.43 173241.29 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.23 2502927.65 173241.50 2502927.38 0.44 173241.29 2502927.67 17324	173241.21	2502927.70	173241.50	2502927.38	0.43
173241.23 2502927.73 173241.50 2502927.38 0.44 173241.27 2502927.76 173241.50 2502927.38 0.45 173241.22 2502927.76 173241.50 2502927.38 0.47 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.41 173241.20 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.23 2502927.65 173241.50 2502927.38 0.44 173241.29 2502927.67 173241.50 2502927.38 0.36 173241.29 2502927.64 17324	173241.30	2502927.71	173241.50	2502927.38	0.38
173241.27 2502927.77 173241.50 2502927.38 0.45 173241.22 2502927.76 173241.50 2502927.38 0.47 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.71 173241.50 2502927.38 0.41 173241.23 2502927.69 173241.50 2502927.38 0.43 173241.29 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.29 2502927.64 17324	173241.23	2502927.71	173241.50	2502927.38	0.42
173241.22 2502927.76 173241.50 2502927.38 0.47 173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.41 173241.20 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.43 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.65 173241.50 2502927.38 0.44 173241.29 2502927.65 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 17324	173241.23	2502927.73	173241.50	2502927.38	0.44
173241.26 2502927.79 173241.50 2502927.38 0.47 173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.41 173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.65 173241.50 2502927.38 0.44 173241.29 2502927.67 173241.50 2502927.38 0.36 173241.29 2502927.64 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 17324	173241.27	2502927.77	173241.50	2502927.38	0.45
173241.23 2502927.82 173241.50 2502927.38 0.51 173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.39 173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 17324	173241.22	2502927.76	173241.50	2502927.38	0.47
173241.27 2502927.78 173241.50 2502927.38 0.46 173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.39 173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.23 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.65 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.39 173241.28 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 17324	173241.26	2502927.79	173241.50	2502927.38	0.47
173241.24 2502927.80 173241.50 2502927.38 0.49 173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.39 173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.64 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.61 17324	173241.23	2502927.82	173241.50	2502927.38	0.51
173241.26 2502927.74 173241.50 2502927.38 0.43 173241.28 2502927.71 173241.50 2502927.38 0.39 173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.73 173241.50 2502927.38 0.36 173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 17324	173241.27	2502927.78	173241.50	2502927.38	0.46
173241.28 2502927.71 173241.50 2502927.38 0.39 173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.73 173241.50 2502927.38 0.36 173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 17324	173241.24	2502927.80	173241.50	2502927.38	0.49
173241.30 2502927.74 173241.50 2502927.38 0.41 173241.22 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.61 173241.50 2502927.38 0.29 173241.28 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.26	2502927.74	173241.50	2502927.38	0.43
173241.22 2502927.69 173241.50 2502927.38 0.41 173241.22 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.29 2502927.64 173241.50 2502927.38 0.39 173241.28 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.64 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.28	2502927.71	173241.50	2502927.38	0.39
173241.22 2502927.71 173241.50 2502927.38 0.43 173241.23 2502927.73 173241.50 2502927.38 0.44 173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.27 2502927.64 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.30	2502927.74	173241.50	2502927.38	0.41
173241.23 2502927.73 173241.50 2502927.38 0.44 173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.27 2502927.70 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.64 173241.50 2502927.38 0.34 173241.30 2502927.64 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.22	2502927.69	173241.50	2502927.38	0.41
173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.27 2502927.70 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.22	2502927.71	173241.50	2502927.38	0.43
173241.26 2502927.65 173241.50 2502927.38 0.36 173241.29 2502927.67 173241.50 2502927.38 0.35 173241.27 2502927.70 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.29 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.23	2502927.73	173241.50	2502927.38	0.44
173241.27 2502927.70 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31					
173241.27 2502927.70 173241.50 2502927.38 0.39 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.29	2502927.67	173241.50	2502927.38	0.35
173241.29 2502927.64 173241.50 2502927.38 0.33 173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.27	2502927.70	173241.50	2502927.38	
173241.28 2502927.64 173241.50 2502927.38 0.34 173241.29 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31				2502927.38	
173241.29 2502927.64 173241.50 2502927.38 0.33 173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.28	2502927.64	173241.50	2502927.38	0.34
173241.30 2502927.59 173241.50 2502927.38 0.29 173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31	173241.29	2502927.64	173241.50	2502927.38	0.33
173241.29 2502927.61 173241.50 2502927.38 0.31 173241.28 2502927.61 173241.50 2502927.38 0.31		2502927.59	173241.50	2502927.38	
173241.28 2502927.61 173241.50 2502927.38 0.31					
173241.38 2502927.63 173241.50 2502927.38 0.27					
	173241.30 173241.29	2502927.59 2502927.61	173241.50 173241.50	2502927.38 2502927.38	0.29 0.31

		ı	I	
173241.84	2502927.35	173241.50	2502927.38	0.34
173241.74	2502927.35	173241.50	2502927.38	0.25
173241.73	2502927.06	173241.50	2502927.38	0.40
173241.88	2502927.19	173241.50	2502927.38	0.43
173241.94	2502927.14	173241.50	2502927.38	0.51
173241.88	2502927.05	173241.50	2502927.38	0.51
173241.85	2502927.03	173241.50	2502927.38	0.50
173241.93	2502927.12	173241.50	2502927.38	0.51
173241.81	2502927.09	173241.50	2502927.38	0.43
173241.92	2502927.13	173241.50	2502927.38	0.49
173241.97	2502927.15	173241.50	2502927.38	0.53
173241.73	2502927.16	173241.50	2502927.38	0.32
173241.68	2502927.15	173241.50	2502927.38	0.30
173241.77	2502927.16	173241.50	2502927.38	0.35
173241.50	2502927.17	173241.50	2502927.38	0.21
173241.56	2502927.13	173241.50	2502927.38	0.26
173241.66	2502927.17	173241.50	2502927.38	0.27
173241.44	2502927.16	173241.50	2502927.38	0.23
173241.53	2502927.14	173241.50	2502927.38	0.25
173241.68	2502927.10	173241.50	2502927.38	0.34
173241.70	2502927.03	173241.50	2502927.38	0.41
173241.70	2502927.05	173241.50	2502927.38	0.39
173241.73	2502927.22	173241.50	2502927.38	0.28
173241.75	2502927.18	173241.50	2502927.38	0.32
173241.72	2502927.17	173241.50	2502927.38	0.31
173241.63	2502927.16	173241.50	2502927.38	0.26
173241.76	2502927.28	173241.50	2502927.38	0.28
173241.72	2502927.23	173241.50	2502927.38	0.27
173241.75	2502926.94	173241.50	2502927.38	0.51
173241.75	2502927.17	173241.50	2502927.38	0.33
173241.89	2502926.93	173241.50	2502927.38	0.60
173241.88	2502926.78	173241.50	2502927.38	0.71
173241.90	2502926.96	173241.50	2502927.38	0.58
173241.85	2502926.86	173241.50	2502927.38	0.63
173241.81	2502926.86	173241.50	2502927.38	0.61
173241.79	2502926.93	173241.50	2502927.38	0.54
173241.79	2502926.78	173241.50	2502927.38	0.67
173241.82	2502926.90	173241.50	2502927.38	0.58
173241.79	2502927.09	173241.50	2502927.38	0.41
173241.85	2502927.25	173241.50	2502927.38	0.38
173241.92	2502927.18	173241.50	2502927.38	0.47
173241.75	2502927.35	173241.50	2502927.38	0.26
173241.69	2502927.11	173241.50	2502927.38	0.33
173241.97	2502927.19	173241.50	2502927.38	0.51

173241.77	2502927.40	173241.50	2502927.38	0.27
173241.78	2502927.23	173241.50	2502927.38	0.32
173241.87	2502927.20	173241.50	2502927.38	0.42
173241.75	2502927.16	173241.50	2502927.38	0.34
173241.55	2502927.18	173241.50	2502927.38	0.21
173241.72	2502927.20	173241.50	2502927.38	0.29
173241.77	2502927.22	173241.50	2502927.38	0.32
GPS測	0.03			
GPS測	0.84			
GPS測	0.40			
GPS測	0.11			

核四施工環境監測低塔氣象塔(63公尺)88年7月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	<0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		1.08%	0.67%	1.08%	0.27%	0.00%	0.00%	3.10%
北北東		0.81%	0.81%	0.13%	0.13%	0.00%	0.00%	1.88%
東北		1.21%	2.42%	0.40%	0.00%	0.00%	0.00%	4.03%
東北東		1.48%	4.30%	0.13%	0.13%	0.00%	0.00%	6.04%
東		1.34%	2.96%	2.15%	0.00%	0.00%	0.00%	6.45%
東南東		0.81%	1.34%	1.34%	0.81%	0.13%	0.00%	4.43%
東南		0.94%	1.34%	3.49%	1.88%	1.48%	0.00%	9.13%
南南東		0.67%	1.48%	1.48%	0.94%	0.54%	0.00%	5.11%
南		2.15%	2.42%	1.48%	0.67%	0.13%	0.00%	6.85%
南南西		3.09%	2.02%	1.21%	0.13%	0.00%	0.00%	6.45%
西南		2.42%	3.09%	0.54%	0.00%	0.00%	0.00%	6.05%
西南西		3.90%	2.69%	1.08%	0.00%	0.00%	0.00%	7.67%
西		6.05%	3.09%	2.02%	1.21%	0.00%	0.00%	12.37%
西北西		5.24%	3.09%	1.08%	0.40%	0.00%	0.00%	9.81%
西北		4.17%	2.69%	0.27%	0.00%	0.00%	0.00%	7.13%
北北西		1.61%	1.08%	0.54%	0.00%	0.00%	0.00%	3.23%
_	0.27%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.27%
小計	0.27%	36.97%	35.49%	18.42%	6.57%	2.28%	0.00%	100.00%

單位:公尺

核四施工環境監測低塔氣象塔(21公尺)88年7月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	<0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		0.94%	1.34%	0.94%	0.00%	0.00%	0.00%	3.22%
北北東		1.61%	0.67%	0.27%	0.00%	0.00%	0.00%	2.55%
東北		0.94%	2.69%	0.13%	0.00%	0.00%	0.00%	3.76%
東北東		2.02%	5.24%	0.13%	0.00%	0.00%	0.00%	7.39%
東		1.75%	4.17%	0.13%	0.00%	0.00%	0.00%	6.05%
東南東		1.21%	2.42%	0.67%	0.27%	0.00%	0.00%	4.57%
東南		0.54%	2.42%	3.09%	1.88%	0.00%	0.00%	7.93%
南南東		0.94%	1.88%	1.88%	0.40%	0.00%	0.00%	5.10%
南		0.67%	1.75%	1.08%	0.40%	0.00%	0.00%	3.90%
南南西		1.21%	2.42%	0.67%	0.00%	0.00%	0.00%	4.30%
西南		1.88%	1.34%	0.00%	0.00%	0.00%	0.00%	3.22%
西南西		1.48%	3.36%	0.67%	0.00%	0.00%	0.00%	5.51%
西		2.82%	2.69%	2.15%	0.13%	0.00%	0.00%	7.79%
西北西		3.23%	1.34%	1.21%	0.00%	0.00%	0.00%	5.78%
西北		11.69%	4.44%	0.27%	0.00%	0.00%	0.00%	16.40%
北北西		7.39%	4.97%	0.00%	0.00%	0.00%	0.00%	12.36%
_	0.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.13%
小計	0.13%	40.32%	43.14%	13.29%	3.08%	0.00%	0.00%	100.00%

核四施工環境監測低塔氣象塔(63公尺)88年8月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	< 0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		0.81%	0.13%	0.27%	0.54%	0.00%	0.00%	1.75%
北北東		0.81%	0.40%	0.00%	0.00%	0.00%	0.00%	1.21%
東北		0.54%	2.02%	0.67%	0.00%	0.00%	0.00%	3.23%
東北東		0.67%	2.96%	0.13%	0.00%	0.00%	0.00%	3.76%
東		0.94%	2.42%	1.48%	0.00%	0.00%	0.00%	4.84%
東南東		1.08%	2.02%	1.88%	0.67%	0.00%	0.00%	5.65%
東南		1.88%	1.48%	2.55%	0.67%	0.27%	0.13%	6.98%
南南東		1.61%	2.02%	3.63%	2.02%	2.02%	0.54%	11.84%
南		1.34%	3.63%	4.30%	3.23%	0.81%	0.13%	13.44%
南南西		2.42%	2.55%	1.08%	0.40%	0.00%	0.00%	6.45%
西南		3.09%	2.15%	0.40%	0.00%	0.00%	0.00%	5.64%
西南西		4.03%	3.36%	0.40%	0.00%	0.00%	0.00%	7.79%
西		3.76%	3.23%	2.96%	0.40%	0.00%	0.00%	10.35%
西北西		4.70%	2.69%	1.08%	0.13%	0.00%	0.00%	8.60%
西北		2.96%	2.15%	0.27%	0.00%	0.00%	0.00%	5.38%
北北西		1.48%	0.40%	0.00%	0.00%	0.00%	0.00%	1.88%
	1.21%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.21%
小計	1.21%	32.12%	33.61%	21.10%	8.06%	3.10%	0.80%	100.00%

單位:公尺

核四施工環境監測低塔氣象塔(21公尺)88年8月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	<0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		2.28%	0.27%	0.40%	0.00%	0.00%	0.00%	2.95%
北北東		0.94%	0.27%	0.54%	0.00%	0.00%	0.00%	1.75%
東北		0.94%	1.88%	0.00%	0.00%	0.00%	0.00%	2.82%
東北東		1.21%	3.76%	0.13%	0.00%	0.00%	0.00%	5.10%
東		1.48%	4.03%	0.27%	0.00%	0.00%	0.00%	5.78%
東南東		1.21%	2.55%	1.34%	0.00%	0.00%	0.00%	5.10%
東南		0.94%	2.82%	2.28%	0.27%	0.13%	0.00%	6.44%
南南東		0.13%	2.55%	3.63%	2.42%	0.40%	0.00%	9.13%
南		0.27%	2.42%	5.78%	1.08%	0.13%	0.00%	9.68%
南南西		1.61%	2.28%	0.94%	0.13%	0.00%	0.00%	4.96%
西南		2.28%	1.88%	0.13%	0.00%	0.00%	0.00%	4.29%
西南西		2.96%	1.61%	0.54%	0.00%	0.00%	0.00%	5.11%
西		2.42%	3.23%	1.08%	0.27%	0.00%	0.00%	7.00%
西北西		3.90%	1.34%	0.13%	0.00%	0.00%	0.00%	5.37%
西北		9.95%	3.23%	0.13%	0.00%	0.00%	0.00%	13.31%
北北西		5.78%	4.84%	0.13%	0.00%	0.00%	0.00%	10.75%
_	0.40%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.40%
小計	0.40%	38.30%	38.96%	17.45%	4.17%	0.66%	0.00%	100.00%

核四施工環境監測低塔氣象塔(63公尺)88年9月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	< 0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		0.78%	0.47%	1.55%	0.62%	2.17%	0.47%	6.06%
北北東		0.62%	0.47%	1.40%	1.24%	0.00%	0.00%	3.73%
東北		0.47%	1.09%	1.55%	0.31%	0.00%	0.00%	3.42%
東北東		0.62%	4.19%	2.33%	0.16%	0.00%	0.00%	7.30%
東		1.09%	2.02%	3.57%	0.78%	0.00%	0.00%	7.46%
東南東		0.31%	1.24%	1.71%	2.95%	2.64%	0.16%	9.01%
東南		1.71%	0.93%	4.03%	4.03%	2.17%	0.00%	12.87%
南南東		0.93%	2.48%	4.34%	2.17%	1.40%	0.16%	11.48%
南		0.47%	1.71%	1.40%	2.48%	0.62%	0.00%	6.68%
南南西		1.24%	0.93%	0.16%	0.00%	0.00%	0.00%	2.33%
西南		1.86%	1.09%	0.00%	0.00%	0.00%	0.00%	2.95%
西南西		1.40%	0.47%	0.00%	0.00%	0.00%	0.00%	1.87%
西		1.71%	0.62%	0.16%	0.00%	0.00%	0.00%	2.49%
西北西		2.79%	2.95%	0.47%	0.16%	0.00%	0.00%	6.37%
西北		2.17%	2.33%	0.31%	0.62%	0.31%	0.00%	5.74%
北北西		0.78%	1.09%	1.09%	2.02%	4.34%	0.47%	9.79%
	0.62%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.62%
小計	0.62%	18.95%	24.08%	24.07%	17.54%	13.65%	1.26%	100.00%

單位:公尺

核四施工環境監測低塔氣象塔(21公尺)88年9月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	< 0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		0.78%	1.09%	1.24%	2.79%	0.00%	0.00%	5.90%
北北東		0.62%	1.40%	1.71%	0.31%	0.00%	0.00%	4.04%
東北		0.31%	2.17%	0.47%	0.00%	0.00%	0.00%	2.95%
東北東		1.09%	6.36%	0.00%	0.00%	0.00%	0.00%	7.45%
東		1.40%	4.34%	1.24%	0.00%	0.00%	0.00%	6.98%
東南東		1.09%	3.10%	3.41%	0.16%	0.00%	0.00%	7.76%
東南		0.47%	2.33%	6.82%	2.17%	0.00%	0.00%	11.79%
南南東		0.31%	3.72%	3.88%	1.71%	0.00%	0.00%	9.62%
南		0.31%	2.02%	2.17%	1.24%	0.00%	0.00%	5.74%
南南西		0.62%	0.47%	0.00%	0.00%	0.00%	0.00%	1.09%
西南		1.40%	0.31%	0.00%	0.00%	0.00%	0.00%	1.71%
西南西		1.09%	0.47%	0.00%	0.00%	0.00%	0.00%	1.56%
西		1.09%	0.62%	0.16%	0.00%	0.00%	0.00%	1.87%
西北西		2.33%	0.62%	0.47%	0.00%	0.00%	0.00%	3.42%
西北		9.61%	2.02%	0.47%	0.16%	0.00%	0.00%	12.26%
北北西		2.95%	5.12%	2.17%	5.27%	0.31%	0.00%	15.82%
_	0.16%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.16%
小計	0.16%	25.47%	36.16%	24.21%	13.81%	0.31%	0.00%	100.00%

核四施工環境監測高塔氣象塔(93公尺)88年9月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	<0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		0.51%	0.25%	2.04%	1.78%	1.27%	3.05%	8.90%
北北東		1.27%	1.27%	1.27%	2.54%	0.00%	0.00%	6.35%
東北		0.51%	3.05%	2.04%	0.51%	0.00%	0.00%	6.11%
東北東		0.51%	3.82%	2.80%	0.25%	0.00%	0.00%	7.38%
東		0.51%	3.82%	1.53%	0.00%	0.76%	0.00%	6.62%
東南東		1.53%	2.29%	0.51%	1.53%	2.54%	0.00%	8.40%
東南		1.27%	2.54%	2.54%	2.04%	0.76%	0.00%	9.15%
南南東		0.51%	1.53%	2.54%	1.78%	0.00%	0.00%	6.36%
南		0.51%	1.02%	0.51%	0.00%	0.00%	0.00%	2.04%
南南西		0.76%	1.02%	0.00%	0.00%	0.00%	0.00%	1.78%
西南		0.51%	1.78%	0.00%	0.00%	0.00%	0.00%	2.29%
西南西		0.51%	3.31%	1.27%	0.00%	0.00%	0.00%	5.09%
西		0.51%	1.53%	0.76%	0.00%	0.25%	0.00%	3.05%
西北西		0.25%	2.54%	1.27%	0.51%	0.25%	0.00%	4.82%
西北		0.76%	1.78%	0.76%	2.54%	0.25%	0.00%	6.09%
北北西		0.00%	1.78%	0.76%	2.80%	4.58%	3.82%	13.74%
_	1.78%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	1.78%
小計	1.78%	10.43%	33.33%	20.60%	16.28%	10.66%	6.87%	100.00%

單位:公尺

核四施工環境監測高塔氣象塔(63公尺)88年9月風速風向聯合頻率分佈

風速	靜風	1級	2級	3級	4級	5級	6級	小計
風向	<0.22	0.22-1.34	1.34-3.13	3.13-5.36	5.36-8.05	8.05-10.73	>10.73	
北		0.51%	0.51%	3.05%	1.27%	1.53%	0.25%	7.12%
北北東		0.25%	2.04%	1.78%	2.04%	0.00%	0.00%	6.11%
東北		1.02%	4.07%	1.53%	0.00%	0.00%	0.00%	6.62%
東北東		0.51%	6.11%	0.51%	0.00%	0.00%	0.00%	7.13%
東		1.78%	1.78%	1.02%	0.00%	0.00%	0.00%	4.58%
東南東		1.02%	1.78%	3.31%	0.76%	0.00%	0.00%	6.87%
東南		0.00%	3.05%	5.34%	1.53%	0.00%	0.00%	9.92%
南南東		0.76%	2.04%	0.76%	0.00%	0.00%	0.00%	3.56%
南		0.76%	0.51%	0.51%	0.00%	0.00%	0.00%	1.78%
南南西		1.27%	3.56%	0.25%	0.00%	0.00%	0.00%	5.08%
西南		2.04%	9.67%	0.25%	0.00%	0.00%	0.00%	11.96%
西南西		0.76%	3.82%	0.00%	0.00%	0.00%	0.00%	4.58%
西		0.00%	0.51%	0.76%	0.00%	0.00%	0.00%	1.27%
西北西		1.02%	1.53%	0.51%	0.25%	0.00%	0.00%	3.31%
西北		0.25%	1.53%	2.54%	2.29%	0.25%	0.00%	6.86%
北北西		0.51%	0.51%	2.04%	4.33%	5.60%	0.00%	12.99%
_	0.25%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.25%
小計	0.25%	12.46%	43.02%	24.16%	12.47%	7.38%	0.25%	100.00%

台2省道與102甲縣道交叉口88年6月非假日噪音逐時監測結果

監測日期: 88/6/28 單位:dB(A)

监则口别.	00/0/20						中心,	(/ t)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	76	69	55	52	51	86.8	70.8	
01~02	75	67	53	51	51	85.7	69.0	
02~03	73	66	53	49	49	84.7	68.8	
03~04	75	70	53	48	48	85.5	68.5	
04~05	76	72	52	49	49	86.3	69.7	
05~06	76	73	53	49	49	91.3	71.3	
06~07	75	71	55	50	50	90.9	71.3	
07~08	78	74	57	53	52	88.9	71.5	
08~09	78	74	56	53	53	90.8	72.5	
09~10	78	75	57	53	53	90.0	72.6	
10~11	79	76	56	54	52	91.3	73.3	
11~12	79	76	59	56	55	90.6	73.5	
12~13	79	76	57	54	53	92.0	73.7	
13~14	79	76	57	54	52	90.3	71.6	
14~15	77	70	57	54	53	90.2	71.6	
15~16	77	74	57	55	54	88.6	71.2	
16~17	78	75	57	54	54	88.8	71.9	
17~18	78	76	57	54	54	92.0	73.5	
18~19	78	76	57	55	54	90.0	72.6	
19~20	76	74	57	54	54	90.3	72.8	
20~21	77	72	56	52	51	90.2	71.3	
21~22	75	72	55	50	49	89.3	70.9	
22~23	75	74	53	50	49	86.8	69.8	
23~24	76	72	55	51	50	89.2	70.7	

台2省道與102甲縣道交叉口88年6月非假日振動逐時監測結果

監測日期: 88/6/28 單位:dB

監測日期: 88/6/28 単位:								, ub
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	42	39	30	30	30	47.4	35.9	
01~02	40	38	30	30	30	46.3	35.3	
02~03	39	34	30	30	30	46.5	34.2	
03~04	35	33	30	30	30	45.0	33.1	
04~05	36	33	30	30	30	46.3	33.9	
05~06	41	36	30	30	30	46.2	34.7	
06~07	43	37	30	30	30	49.2	36.2	
07~08	41	38	30	30	30	45.6	35.7	
08~09	46	40	30	30	30	50.1	37.9	
09~10	42	40	30	30	30	47.7	36.8	
10~11	42	38	30	30	30	47.7	36.1	
11~12	44	40	30	30	30	49.1	37.3	
12~13	44	41	30	30	30	47.3	36.7	
13~14	38	34	30	30	30	49.5	35.9	
14~15	41	37	30	30	30	48.4	36.4	
15~16	39	36	30	30	30	49.0	36.3	
16~17	39	34	30	30	30	48.2	35.8	
17~18	41	39	31	30	30	48.2	36.5	
18~19	43	40	30	30	30	49.4	37.1	
19~20	40	39	30	30	30	48.7	36.3	
20~21	39	35	30	30	30	46.7	34.9	
21~22	40	35	30	30	30	47.1	35.1	
22~23	41	36	30	30	30	48.4	35.7	
23~24	40	34	30	30	30	47.2	35.1	

台2省道與102甲縣道交叉口88年6月假日噪音逐時監測結果

監測日期: 88/6/27 單位:dB(A)

监则口别.	00/0/2/						₽世.0	D(, t)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	80	73	57	53	52	87.6	72.8	
01~02	79	75	55	53	52	89.7	72.9	
02~03	78	73	55	52	51	88.0	71.5	
03~04	77	72	55	52	52	88.4	71.2	
04~05	77	72	54	51	51	88.3	71.6	
05~06	78	73	55	52	52	89.2	72.4	
06~07	80	75	56	54	53	87.4	72.5	
07~08	78	73	59	55	53	88.0	72.0	
08~09	79	76	58	55	54	87.2	72.0	
09~10	81	77	58	55	54	88.9	74.0	
10~11	80	74	59	55	54	88.7	72.9	
11~12	79	76	60	56	54	90.5	74.2	
12~13	80	75	60	56	54	90.1	73.9	
13~14	78	74	60	55	54	90.9	73.4	
14~15	51	75	59	56	55	88.7	73.2	
15~16	79	61	60	55	54	91.2	74.3	
16~17	77	74	60	56	55	89.7	73.1	
17~18	79	77	60	58	56	90.6	74.0	
18~19	80	77	60	57	56	89.4	73.5	
19~20	79	76	60	57	55	89.3	73.6	
20~21	79	72	57	54	54	87.6	72.1	
21~22	76	72	56	53	53	87.8	71.9	
22~23	77	75	56	53	53	87.8	71.6	
23~24	77	73	56	53	53	88.2	71.4	

台2省道與102甲縣道交叉口88年6月假日振動逐時監測結果

監測日期: 88/6/27 單位:dB

监测口别.	00/0/27							. ub
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	44	39	30	30	30	50.0	37.8	
01~02	39	35	30	30	30	47.4	35.2	
02~03	38	35	30	30	30	46.2	34.2	
03~04	39	35	30	30	30	46.5	34.6	
04~05	36	34	30	30	30	46.4	34.2	
05~06	41	35	30	30	30	48.2	35.9	
06~07	43	39	30	30	30	47.7	36.2	
07~08	43	39	30	30	30	48.9	37.0	
08~09	44	42	30	30	30	49.9	37.5	
09~10	45	43	30	30	30	51.8	38.7	
10~11	44	42	30	30	30	49.8	37.6	
11~12	28	42	30	30	30	48.9	37.1	
12~13	44	41	30	30	30	47.8	37.0	
13~14	43	41	30	30	30	47.6	36.7	
14~15	43	39	30	30	30	48.8	37.0	
15~16	44	41	30	30	30	46.8	36.5	
16~17	42	39	30	30	30	48.9	36.7	
17~18	46	42	30	30	30	49.6	38.1	
18~19	45	42	30	30	30	48.4	37.6	
19~20	42	41	30	30	30	47.8	36.5	
20~21	43	38	30	30	30	46.9	35.6	
21~22	41	37	30	30	30	48.1	35.9	
22~23	40	37	30	30	30	47.3	35.5	
23~24	40	34	30	30	30	45.7	34.0	

海濱公園88年6月非假日噪音逐時監測結果

監測日期: 88/6/28 單位:dB(A)

監測日期:	88/6/28						単位:c	IB(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	73	71	53	49	48	87.9	69.0	
01~02	72	69	52	50	48	88.5	68.0	
02~03	71	70	53	49	48	88.3	68.1	
03~04	71	69	53	49	49	87.2	67.5	
04~05	71	69	51	49	49	86.3	67.3	
05~06	72	70	53	49	49	86.8	67.9	
06~07	73	71	51	50	50	89.0	68.4	
07~08	75	74	54	51	51	89.1	70.7	
08~09	76	74	60	51	50	88.3	70.6	
09~10	75	73	57	52	51	88.6	70.6	
10~11	75	74	55	52	51	88.1	70.4	
11~12	76	75	64	52	51	88.5	71.3	
12~13	76	74	57	52	51	88.3	71.0	
13~14	76	74	56	53	52	89.9	70.9	
14~15	76	74	55	52	51	90.5	71.3	
15~16	75	72	57	52	51	91.0	71.3	
16~17	77	75	58	53	51	88.5	71.0	
17~18	77	75	58	54	53	89.2	72.0	
18~19	76	75	64	54	53	88.5	72.3	
19~20	75	74	59	52	52	89.5	70.8	
20~21	74	72	54	51	50	89.6	70.0	
21~22	73	72	56	50	50	87.0	69.2	
22~23	73	72	56	50	50	88.8	70.6	
23~24	73	71	57	50	49	87.8	69.6	

寮海濱公園88年6月非假日振動逐時監測結果

88/6/28 單位:dB

88/0/28						单位,UD			
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註	
00~01	39	36	31	30	30	46.6	34.4		
01~02	36	34	30	30	30	46.0	33.1		
02~03	35	33	30	30	30	42.4	32.1		
03~04	36	33	30	30	30	43.0	32.3		
04~05	35	33	30	30	30	44.9	32.5		
05~06	36	35	30	30	30	45.0	33.4		
06~07	37	35	30	30	30	44.4	33.1		
07~08	38	36	30	30	30	47.4	34.1		
08~09	38	35	30	30	30	45.0	33.4		
09~10	38	36	30	30	30	43.6	33.2		
10~11	38	36	30	30	30	44.9	33.6		
11~12	38	35	30	30	30	45.5	33.5		
12~13	39	37	30	30	30	46.4	34.4		
13~14	1677	33	30	30	30	46.9	34.3		
14~15	38	36	30	30	30	46.0	33.9		
15~16	38	35	30	30	30	45.9	33.7		
16~17	37	36	30	30	30	45.1	33.5		
17~18	37	36	30	30	30	45.0	33.5		
18~19	40	36	31	30	30	48.6	36.0		
19~20	38	36	30	30	30	44.6	33.8		
20~21	39	36	30	30	30	46.9	34.5		
21~22	36	35	30	30	30	45.7	33.4		
22~23	36	33	30	30	30	43.4	32.3		
23~24	37	34	30	30	30	46.4	33.5		

鹽寮海濱公園88年6月假日噪音逐時監測結果

寮海濱公園88年6月假日振動逐時監測結果

監測日期: 88/6/27	單位:dB(A)
---------------	----------

监则口别.	00/0/27						₽四・0	D(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	69	68	51	48	47	86.3	65.4	
01~02	70	68	52	47	46	86.8	66.0	
02~03	71	70	52	48	47	89.3	68.1	
03~04	70	69	52	32	47	89.2	67.4	
04~05	70	69	50	48	47	87.7	67.0	
05~06	71	70	51	48	47	88.5	67.6	
06~07	71	70	51	48	48	89.9	68.0	
07~08	73	72	51	49	48	90.2	68.0	
08~09	74	73	53	50	49	87.8	69.4	
09~10	73	73	62	49	49	82.9	69.3	
10~11	74	73	53	49	49	88.5	69.6	
11~12	75	74	59	50	49	89.1	70.9	
12~13	75	75	62	49	49	89.3	71.3	
13~14	75	74	56	50	49	86.8	70.0	
14~15	74	73	55	51	51	88.9	69.7	
15~16	73	72	61	52	51	83.1	69.0	
16~17	73	72	55	51	50	81.7	68.3	
17~18	72	72	55	51	50	87.8	69.0	
18~19	73	72	56	51	48	89.1	69.1	
19~20	73	72	56	51	50	92.0	70.6	
20~21	73	73	53	50	49	82.0	68.5	
21~22	72	70	53	49	48	88.5	68.7	
22~23	72	71	51	48	47	88.6	68.2	
23~24	72	71	51	47	47	88.9	68.2	

監測日期 88/6/27 單位:dB

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	36	33	30	30	30	47.0	32.7	
01~02	36	33	30	30	30	45.8	32.4	
02~03	37	33	30	30	30	45.1	32.8	
03~04	36	32	30	30	30	45.7	32.7	
04~05	35	33	30	30	30	44.0	32.0	
05~06	36	33	30	30	30	44.3	32.2	
06~07	36	34	30	30	30	45.6	33.0	
07~08	38	34	30	30	30	47.6	34.0	
08~09	36	33	30	30	30	44.4	32.4	
09~10	38	34	30	30	30	45.8	33.4	
10~11	39	35	30	30	30	46.5	33.8	
11~12	38	35	30	30	30	46.2	33.5	
12~13	37	34	30	30	30	43.8	32.9	
13~14	38	36	30	30	30	47.9	34.2	
14~15	37	34	30	30	30	45.4	33.0	
15~16	36	34	30	30	30	42.5	32.1	
16~17	37	36	30	30	30	45.6	33.2	
17~18	37	35	30	30	30	43.8	33.5	
18~19	38	34	30	30	30	44.1	32.6	
19~20	38	36	31	30	30	45.2	33.7	
20~21	39	37	30	30	30	44.7	34.2	
21~22	37	35	30	30	30	45.7	33.3	
22~23	37	34	30	30	30	47.0	33.5	
23~24	36	34	30	30	30	43.8	32.2	

隆街上88年6月非假日噪音逐時監測結果

欧洲口钳・99/6/29 開位・dB(A)

監測日期:	88/6/28						IB(A)	
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	75	72	55	51	50	82.0	67.7	
01~02	74	71	54	51	50	82.3	67.2	
02~03	74	72	54	51	50	83.7	68.2	
03~04	75	71	56	51	50	82.4	67.8	
04~05	75	73	55	51	50	83.3	68.6	
05~06	75	73	54	51	50	83.2	68.9	
06~07	75	73	57	52	51	83.2	69.2	
07~08	77	75	59	53	52	82.2	70.7	
08~09	77	75	64	54	52	82.5	71.4	
09~10	77	76	66	54	51	84.3	72.1	
10~11	78	76	67	54	53	85.2	72.7	
11~12	79	77	67	55	53	86.8	73.4	
12~13	78	76	65	55	53	85.2	72.9	
13~14	76	76	65	56	55	84.1	72.4	
14~15	77	77	63	55	53	83.9	72.3	
15~16	77	76	66	58	56	84.6	72.4	
16~17	80	76	65	57	55	84.4	72.7	
17~18	76	75	66	55	53	85.6	72.4	
18~19	77	75	64	55	52	83.3	71.7	
19~20	76	74	63	53	51	82.6	70.5	
20~21	76	75	58	53	51	84.0	70.2	
21~22	74	74	56	54	53	83.9	69.7	
22~23	75	73	61	53	52	84.2	70.0	
23~24	74	73	56	53	52	83.9	69.1	

隆街上88年6月非假日振動逐時監測結果

監測日期8	8/6/28						單位	: dB
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	39	35	30	30	30	54.8	36.9	
01~02	41	38	30	30	30	53.1	36.2	
02~03	39	37	30	30	30	55.0	37.9	
03~04	42	38	30	30	30	56.2	38.3	
04~05	40	36	30	30	30	-	38.8	
05~06	33	37	30	30	30	55.9	38.0	
06~07	38	35	30	30	30	54.3	36.7	
07~08	45	40	31	30	30	56.7	40.3	
08~09	42	40	32	30	30	54.0	39.5	
09~10	43	40	32	30	30	55.5	40.0	
10~11	47	45	32	30	30	55.0	41.1	
11~12	48	44	32	30	30	58.5	43.1	
12~13	49	44	32	30	30	59.0	43.2	
13~14	47	43	30	30	30	56.6	41.7	
14~15	47	43	30	30	30	58.7	43.2	
15~16	48	43	30	30	35	54.4	41.7	
16~17	46	44	32	30	30	55.6	41.2	
17~18	47	44	31	30	30	58.4	42.8	
18~19	46	40	33	30	30	56.6	41.0	
19~20	43	39	30	30	30	56.2	39.9	
20~21	42	38	30	30	30	53.1	38.3	
21~22	41	37	30	30	30	52.1	37.3	
22~23	40	36	32	30	30	51.9	37.3	
23~24	40	36	30	30	30	52.5	37.0	

福隆街上88年6月假日噪音逐時監測結果

監測日期: 88/6/27 單位:dB(A)

监则口别.	00/0/27						₽四.0	D(/ \/
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	73	71	52	48	47	82.7	67.3	
01~02	72	71	53	50	49	83.0	67.0	
02~03	72	71	53	50	49	84.3	66.7	
03~04	72	70	53	52	51	82.3	66.2	
04~05	73	72	54	50	49	85.9	68.4	
05~06	73	71	53	49	49	83.7	67.7	
06~07	73	72	53	49	47	82.0	66.8	
07~08	74	73	54	51	50	83.5	68.4	
08~09	74	73	56	51	50	82.5	68.6	
09~10	73	72	56	53	53	82.8	69.1	
10~11	76	75	66	53	52	83.9	71.4	
11~12	76	74	66	53	52	82.7	70.7	
12~13	76	75	66	52	50	85.1	71.2	
13~14	76	75	66	55	55	84.9	71.7	
14~15	75	75	65	54	53	86.3	71.0	
15~16	76	74	64	53	52	84.7	70.8	
16~17	75	74	65	54	52	84.1	70.7	
17~18	74	73	64	54	53	83.6	69.7	
18~19	76	75	66	56	56	86.3	71.8	
19~20	76	75	61	55	55	83.5	70.7	
20~21	74	74	59	54	53	85.5	69.9	
21~22	76	74	59	53	51	84.9	69.5	
22~23	71	70	56	53	52	84.2	67.6	
23~24	72	71	55	51	51	85.3	68.8	

隆街上88年6月假日振動逐時監測結果

監測日期 88/6/27 單位:dB

監別口別の	0. 0. – .							. ub
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	41	38	30	30	30	55.0	37.8	
01~02	41	37	30	30	30	52.9	36.2	
02~03	42	38	30	30	30	52.7	36.4	
03~04	42	37	30	30	30	53.1	36.5	
04~05	41	39	30	30	30	56.7	38.1	
05~06	44	39	30	30	30	54.9	38.4	
06~07	42	38	30	30	30	53.6	36.9	
07~08	43	39	30	30	30	55.6	38.3	
08~09	45	41	31	30	30	56.5	39.6	
09~10	47	43	31	30	30	55.8	40.5	
10~11	47	44	31	30	30	56.7	41.3	
11~12	47	43	30	30	30	56.8	41.2	
12~13	45	42	30	30	30	55.1	40.0	
13~14	47	44	34	30	30	56.2	41.2	
14~15	47	44	30	30	30	55.0	40.4	
15~16	46	43	33	30	30	53.8	39.9	
16~17	46	42	33	30	30	54.2	39.9	
17~18	45	41	33	30	30	54.7	39.8	
18~19	46	42	34	30	30	52.7	39.5	
19~20	44	41	33	30	30	53.5	39.4	
20~21	44	39	30	30	30	53.0	38.0	
21~22	43	40	31	30	30	54.6	39.4	
22~23	42	38	30	30	30	54.0	38.0	
23~24	41	37	30	30	30	51.4	36.5	

102縣道新社橋88年6月非假日噪音逐時監測結果

監測日期: 88/7/5 單位: dB(A)

監測日期:	88/7/5						IB(A)	
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	53	62	45	44	44	70.9	57.6	
01~02	65	63	47	44	39	76.5	59.3	
02~03	62	55	46	44	44	68.8	55.2	
03~04	62	59	46	43	43	70.4	56.1	
04~05	61	55	47	45	45	69.1	55.0	
05~06	57	54	46	44	43	71.8	54.6	
06~07	61	57	46	43	42	67.8	55.0	
07~08	62	59	46	44	44	72.3	57.1	
08~09	65	62	47	44	44	71.5	58.6	
09~10	67	61	49	46	46	75.6	60.5	
10~11	66	64	49	45	43	77.7	60.8	
11~12	66	63	48	44	43	76.0	60.2	
12~13	66	62	49	46	45	75.0	59.8	
13~14	66	64	49	45	44	74.8	60.5	
14~15	67	64	48	44	44	75.8	60.7	
15~16	68	65	50	46	44	76.8	61.5	
16~17	67	64	50	46	45	75.1	60.8	
17~18	66	63	50	46	45	77.4	60.8	
18~19	65	63	48	45	44	72.5	59.7	
19~20	65	61	48	43	42	73.1	58.9	
20~21	60	58	47	44	43	69.0	55.5	
21~22	61	57	47	44	42	71.3	57.0	
22~23	59	56	47	43	43	71.6	57.2	
23~24	60	55	44	42	41	70.5	56.1	

102縣道之新社橋88年6月非假日振動逐時監測結果

監測日期: 88/7/5 單位:dB

监测口别.	00/1/3			平位				
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	35	32	30	30	30	45.6	33.0	
01~02	34	32	30	30	30	41.7	31.6	
02~03	34	33	30	30	30	42.5	31.9	
03~04	36	35	32	30	30	44.8	34.1	
04~05	36	34	30	30	30	44.6	33.1	
05~06	33	31	30	30	30	40.9	31.1	
06~07	35	33	30	30	30	43.4	32.2	
07~08	36	32	30	30	30	45.4	32.6	
08~09	34	32	30	30	30	42.1	31.6	
09~10	36	33	30	30	30	46.5	33.0	
10~11	35	33	30	30	30	43.5	32.2	
11~12	36	33	30	30	30	48.2	32.9	
12~13	34	33	30	30	30	48.1	32.8	
13~14	35	34	30	30	30	46.9	33.0	
14~15	35	34	30	30	30	48.6	33.1	
15~16	38	36	30	30	30	51.0	35.1	
16~17	37	33	30	30	30	50.0	34.3	
17~18	37	34	30	30	30	47.5	32.9	
18~19	37	35	30	30	30	45.9	32.9	
19~20	35	32	30	30	30	43.7	31.9	
20~21	33	32	30	30	30	43.4	31.8	
21~22	35	32	30	30	30	43.6	32.1	
22~23	33	31	30	30	30	40.5	31.1	
23~24	33	31	30	30	30	43.4	31.6	

102縣道之新社橋88年6月假日噪音逐時監測結果

102縣道之新社橋88年6月假日振動逐時監測結果

<u> </u>	00/ // =						<u> 두 ഥ . u</u>	D(71)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	61	57	43	40	39	73.6	56.3	
01~02	61	57	43	40	40	72.4	55.7	
02~03	62	58	43	40	40	77.1	58.5	
03~04	61	58	44	41	41	73.7	56.5	
04~05	64	61	43	40	40	73.9	57.9	
05~06	64	61	44	41	40	73.8	58.0	
06~07	65	63	46	40	40	75.5	58.3	
07~08	66	63	45	41	40	81.0	61.7	
08~09	63	60	48	43	42	75.0	58.7	
09~10	65	63	46	40	39	82.7	61.4	
10~11	66	63	48	42	40	74.3	59.5	
11~12	65	61	45	42	41	83.4	61.0	
12~13	67	64	46	42	41	82.0	61.9	
13~14	66	64	47	41	40	76.7	60.7	
14~15	65	64	46	42	41	78.2	60.3	
15~16	62	60	46	43	42	74.4	58.1	
16~17	66	64	45	41	40	79.6	61.3	
17~18	66	64	46	41	41	79.5	61.4	
18~19	66	64	48	41	41	73.8	59.9	
19~20	64	60	45	41	40	71.0	57.2	
20~21	62	58	44	42	40	70.9	56.0	
21~22	64	61	47	44	43	74.6	58.3	
22~23	63	59	47	44	44	74.0	57.6	
23~24	63	60	46	42	41	74.5	57.2	

監測日期:	88/7/4			單位	: dB

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	33	32	30	30	30	39.9	31.3	
01~02	34	33	30	30	30	44.6	32.0	
02~03	32	32	30	30	30	39.5	30.9	
03~04	33	32	30	30	30	43.7	31.9	
04~05	34	32	30	30	30	41.7	31.3	
05~06	34	32	30	30	30	46.1	32.3	
06~07	36	34	30	30	30	45.6	32.8	
07~08	34	33	30	30	30	44.1	31.9	
08~09	34	33	31	30	30	38.7	32.1	
09~10	36	34	30	30	30	43.2	33.3	
10~11	36	33	30	30	30	46.2	33.9	
11~12	36	35	31	30	30	43.2	33.0	
12~13	39	35	31	30	30	44.2	33.8	
13~14	37	34	30	30	30	44.6	32.8	
14~15	35	33	30	30	30	43.2	32.2	
15~16	33	32	30	30	30	40.7	31.6	
16~17	36	33	30	30	30	46.8	33.0	
17~18	37	33	30	30	30	48.1	33.4	
18~19	38	35	30	30	30	46.0	33.3	
19~20	35	32	30	30	30	51.1	34.1	
20~21	36	33	30	30	30	42.5	32.4	
21~22	35	33	30	30	30	42.7	31.7	
22~23	37	32	30	30	30	45.8	32.8	
23~24	35	32	30	30	30	44.7	32.4	

港部落88年6月非假日噪音逐時監測結果

監測日期: 88/7/5 單位:dB(A)

時間上値 L5 L10 L50 L90 L95 Lmax Leq 構註 00~01 61 59 46 41 41 68.5 55.3 01~02 61 53 46 40 40 70.1 55.5 02~03 61 54 45 42 40 70.0 55.8 03~04 60 53 45 40 40 68.4 54.1 04~05 59 56 46 40 40 68.4 54.1 05~06 59 57 47 43 41 70.9 56.1 06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 10~11 63 58 50 46 45 71.3	監測日期:	88/ //5						里12:0	B(A)
01~02 61 53 46 40 40 70.1 55.5 02~03 61 54 45 42 40 70.0 55.8 03~04 60 53 45 40 40 68.4 54.1 04~05 59 56 46 40 40 67.5 53.5 05~06 59 57 47 43 41 70.9 56.1 06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.3 56.4 <th>時間L值</th> <th>L5</th> <th>L10</th> <th>L50</th> <th>L90</th> <th>L95</th> <th>Lmax</th> <th>Leq</th> <th>備註</th>	時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
02~03 61 54 45 42 40 70.0 55.8 03~04 60 53 45 40 40 68.4 54.1 04~05 59 56 46 40 40 67.5 53.5 05~06 59 57 47 43 41 70.9 56.1 06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.3 56.4 <td>00~01</td> <td>61</td> <td>59</td> <td>46</td> <td>41</td> <td>41</td> <td>68.5</td> <td>55.3</td> <td></td>	00~01	61	59	46	41	41	68.5	55.3	
03~04 60 53 45 40 40 68.4 54.1 04~05 59 56 46 40 40 67.5 53.5 05~06 59 57 47 43 41 70.9 56.1 06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 <td>01~02</td> <td>61</td> <td>53</td> <td>46</td> <td>40</td> <td>40</td> <td>70.1</td> <td>55.5</td> <td></td>	01~02	61	53	46	40	40	70.1	55.5	
04~05 59 56 46 40 40 67.5 53.5 05~06 59 57 47 43 41 70.9 56.1 06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.3 56.4 14~15 65 60 50 46 45 71.3 56.4 15~16 65 59 50 46 45 74.4 58.2 <td>02~03</td> <td>61</td> <td>54</td> <td>45</td> <td>42</td> <td>40</td> <td>70.0</td> <td>55.8</td> <td></td>	02~03	61	54	45	42	40	70.0	55.8	
05~06 59 57 47 43 41 70.9 56.1 06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 45 71.3 56.4 15~16 65 59 50 46 45 74.4 58.2 <td>03~04</td> <td>60</td> <td>53</td> <td>45</td> <td>40</td> <td>40</td> <td>68.4</td> <td>54.1</td> <td></td>	03~04	60	53	45	40	40	68.4	54.1	
06~07 62 55 48 44 44 70.3 56.3 07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.7 59.3 <td>04~05</td> <td>59</td> <td>56</td> <td>46</td> <td>40</td> <td>40</td> <td>67.5</td> <td>53.5</td> <td></td>	04~05	59	56	46	40	40	67.5	53.5	
07~08 62 59 49 45 45 71.5 58.4 08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 45 71.3 56.4 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 <td>05~06</td> <td>59</td> <td>57</td> <td>47</td> <td>43</td> <td>41</td> <td>70.9</td> <td>56.1</td> <td></td>	05~06	59	57	47	43	41	70.9	56.1	
08~09 64 59 50 47 45 71.8 58.7 09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 45 71.3 56.4 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 <td>06~07</td> <td>62</td> <td>55</td> <td>48</td> <td>44</td> <td>44</td> <td>70.3</td> <td>56.3</td> <td></td>	06~07	62	55	48	44	44	70.3	56.3	
09~10 63 61 50 48 47 71.9 57.5 10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 <td>07~08</td> <td>62</td> <td>59</td> <td>49</td> <td>45</td> <td>45</td> <td>71.5</td> <td>58.4</td> <td></td>	07~08	62	59	49	45	45	71.5	58.4	
10~11 63 58 50 46 45 71.3 56.7 11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.6 54.3 22~23 60 54 46 42 41 68.6 54.3	08~09	64	59	50	47	45	71.8	58.7	
11~12 64 60 51 47 46 71.1 57.2 12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.6 54.3 22~23 60 54 46 42 41 68.6 54.3	09~10	63	61	50	48	47	71.9	57.5	
12~13 64 60 51 46 45 71.8 57.2 13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.6 54.3 22~23 60 54 46 42 41 68.6 54.3	10~11	63	58	50	46	45	71.3	56.7	
13~14 62 59 50 46 45 71.3 56.4 14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.6 54.3 22~23 60 54 46 42 41 68.6 54.3	11~12	64	60	51	47	46	71.1	57.2	
14~15 65 60 50 46 46 72.3 58.1 15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	12~13	64	60	51	46	45	71.8	57.2	
15~16 65 59 50 46 45 74.4 58.2 16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	13~14	62	59	50	46	45	71.3	56.4	
16~17 65 62 52 47 46 73.0 59.1 17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	14~15	65	60	50	46	46	72.3	58.1	
17~18 65 61 51 47 46 73.7 59.3 18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	15~16	65	59	50	46	45	74.4	58.2	
18~19 65 62 52 48 45 71.1 58.9 19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	16~17	65	62	52	47	46	73.0	59.1	
19~20 61 59 49 45 44 69.9 56.7 20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	17~18	65	61	51	47	46	73.7	59.3	
20~21 60 58 48 43 42 68.5 54.4 21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	18~19	65	62	52	48	45	71.1	58.9	
21~22 61 55 46 42 41 68.0 54.8 22~23 60 54 46 42 41 68.6 54.3	19~20	61	59	49	45	44	69.9	56.7	
22~23 60 54 46 42 41 68.6 54.3	20~21	60	58	48	43	42	68.5	54.4	
	21~22	61	55	46	42	41	68.0	54.8	
23~24 62 57 46 42 41 69.6 55.0	22~23	60	54	46	42	41	68.6	54.3	
	23~24	62	57	46	42	41	69.6	55.0	

港部落88年6月非假日振動逐時監測結果

監測日期 88/7/5 單位:dB

監測口期の							. ub	
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	32.8	30.0	
01~02	30	30	30	30	30	33.8	30.1	
02~03	30	30	30	30	30	31.0	30.0	
03~04	30	30	30	30	30	31.5	30.0	
04~05	30	30	30	30	30	32.1	30.0	
05~06	30	30	30	30	30	35.0	30.2	
06~07	32	30	30	30	30	36.1	30.4	
07~08	32	32	30	30	30	36.9	30.7	
08~09	32	31	30	30	30	40.4	31.1	
09~10	33	32	30	30	30	39.7	31.9	
10~11	31	31	30	30	30	32.5	30.4	
11~12	33	32	30	30	30	38.7	31.2	
12~13	31	30	30	30	30	47.6	33.5	
13~14	32	31	30	30	30	36.4	30.7	
14~15	33	32	30	30	30	38.0	31.0	
15~16	32	31	30	30	30	34.1	30.6	
16~17	33	32	30	30	30	38.1	31.2	
17~18	35	34	30	30	30	42.9	32.1	
18~19	33	32	30	30	30	35.9	30.7	
19~20	30	30	30	30	30	34.8	30.2	
20~21	31	30	30	30	30	35.1	30.4	
21~22	30	30	30	30	30	31.9	30.1	
22~23	30	30	30	30	30	32.3	30.1	
23~24	31	30	30	30	30	32.2	30.1	

過港部落88年6月假日噪音逐時監測結果

監測日期: 88/7/4 單位:dB(A)

88/7/4						里12:0	ט(א)
L5	L10	L50	L90	L95	Lmax	Leq	備註
63	58	46	44	44	72.3	57.5	
61	58	47	43	43	69.9	55.9	
60	57	45	42	41	69.4	55.2	
60	56	47	42	41	68.0	54.1	
60	56	46	43	42	67.5	53.7	
60	57	47	43	42	69.1	55.1	
65	59	48	45	44	69.7	56.8	
63	59	50	45	44	73.5	59.3	
63	62	50	45	45	72.2	58.5	
66	62	50	47	46	73.2	60.1	
67	63	50	46	45	74.2	60.5	
67	65	51	47	47	73.9	61.0	
67	65	51	47	45	75.0	61.6	
67	65	51	48	45	74.0	61.4	
66	66	52	47	46	72.9	60.8	
68	65	52	48	46	74.5	61.6	
69	65	51	47	46	74.8	62.1	
68	66	52	49	47	74.5	61.6	
67	65	51	46	45	74.7	60.9	
63	62	50	46	45	73.1	59.8	
63	60	48	45	44	70.8	57.4	
61	56	47	44	44	70.8	56.8	
61	59	48	45	44	69.4	56.5	
58	57	47	44	44	71.2	56.6	
	63 61 60 60 60 60 65 63 63 66 67 67 67 66 68 69 68 67 63 63 61 61	L5 L10 63 58 61 58 60 57 60 56 60 56 60 56 60 56 60 57 65 59 63 59 63 62 66 62 67 63 67 65 67 65 68 66 67 65 68 66 67 65 68 66 67 65 63 62 63 62 63 60 61 59	L5 L10 L50 63 58 46 61 58 47 60 57 45 60 56 46 60 56 46 60 57 47 65 59 48 63 59 50 63 62 50 66 62 50 67 63 50 67 65 51 67 65 51 66 66 52 68 65 52 69 65 51 68 66 52 67 65 51 68 66 52 67 65 51 63 62 50 63 60 48 61 56 47 61 59 48	L5 L10 L50 L90 63 58 46 44 61 58 47 43 60 57 45 42 60 56 46 43 60 57 47 43 65 59 48 45 63 59 50 45 63 62 50 45 66 62 50 47 67 63 50 46 67 65 51 47 67 65 51 47 68 65 52 48 69 65 51 47 68 66 52 49 67 65 51 46 63 62 50 46 69 65 51 47 68 66 52 49 67 65	L5 L10 L50 L90 L95 63 58 46 44 44 61 58 47 43 43 60 57 45 42 41 60 56 46 43 42 60 57 47 43 42 60 57 47 43 42 65 59 48 45 44 63 59 50 45 44 63 62 50 45 45 66 62 50 47 46 67 63 50 46 45 67 65 51 47 47 67 65 51 47 46 68 65 52 48 46 69 65 51 47 46 68 66 52 49 47	L5 L10 L50 L90 L95 Lmax 63 58 46 44 44 72.3 61 58 47 43 43 69.9 60 57 45 42 41 69.4 60 56 47 42 41 68.0 60 56 46 43 42 67.5 60 57 47 43 42 69.1 65 59 48 45 44 69.7 63 59 50 45 44 73.5 63 62 50 45 45 72.2 66 62 50 47 46 73.2 67 63 50 46 45 74.2 67 65 51 47 45 75.0 67 65 51 47 45 72.9 68 65 52 <td>L5 L10 L50 L90 L95 Lmax Leq 63 58 46 44 44 72.3 57.5 61 58 47 43 43 69.9 55.9 60 57 45 42 41 69.4 55.2 60 56 46 43 42 67.5 53.7 60 56 46 43 42 69.1 55.1 60 56 46 43 42 69.1 55.1 60 57 47 43 42 69.1 55.1 60 57 47 43 42 69.1 55.1 65 59 48 45 44 69.7 56.8 63 59 50 45 44 73.5 59.3 63 62 50 47 46 73.2 60.1 67 63 50 46<!--</td--></td>	L5 L10 L50 L90 L95 Lmax Leq 63 58 46 44 44 72.3 57.5 61 58 47 43 43 69.9 55.9 60 57 45 42 41 69.4 55.2 60 56 46 43 42 67.5 53.7 60 56 46 43 42 69.1 55.1 60 56 46 43 42 69.1 55.1 60 57 47 43 42 69.1 55.1 60 57 47 43 42 69.1 55.1 65 59 48 45 44 69.7 56.8 63 59 50 45 44 73.5 59.3 63 62 50 47 46 73.2 60.1 67 63 50 46 </td

附錄 .3-過港部落88年6月假日振動逐時監測結果

監測日期 88/7/4 單位:dB

温川口州 0							. ub	
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	32	31	30	30	30	34.3	30.4	
01~02	30	30	30	30	30	33.0	30.1	
02~03	30	30	30	30	30	31.3	30.0	
03~04	30	30	30	30	30	30.9	30.0	
04~05	30	30	30	30	30	31.5	30.0	
05~06	30	30	30	30	30	32.6	30.1	
06~07	30	30	30	30	30	35.6	30.3	
07~08	32	32	30	30	30	35.6	30.6	
08~09	32	31	30	30	30	35.0	30.5	
09~10	33	32	30	30	30	37.9	30.9	
10~11	33	32	30	30	30	39.4	31.0	
11~12	33	32	30	30	30	39.7	31.0	
12~13	33	33	30	30	30	42.2	31.5	
13~14	33	32	30	30	30	39.6	31.0	
14~15	34	33	30	30	30	37.8	31.1	
15~16	34	32	30	30	30	41.6	31.5	
16~17	34	33	30	30	30	39.0	31.4	
17~18	34	33	30	30	30	39.0	31.3	
18~19	34	33	30	30	30	39.3	31.4	
19~20	32	32	30	30	30	36.2	30.7	
20~21	32	31	30	30	30	32.8	30.4	
21~22	30	30	30	30	30	33.2	30.1	
22~23	30	30	30	30	30	32.9	30.1	
23~24	30	30	30	30	30	34.8	30.2	

台2省道與102甲縣道交叉口88年7月非假日噪音逐時監測結果

監測日期: 88/7/20 單位:dB(A)

監測日期:	88/ //20				•		単122:0	D(\(\triangle\)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	79	72	58	54	53	81	69.1	
01~02	75	65	53	52	52	79.9	67.5	
02~03	73	70	53	51	51	80.3	67.7	
03~04	76	69	52	51	51	80.2	67.8	
04~05	77	70	55	52	52	83.0	68.6	
05~06	76	72	54	52	52	93.8	72.1	
06~07	77	73	59	53	53	93.0	72.9	
07~08	80	77	62	54	53	90.9	73.9	
08~09	81	75	58	54	54	90.8	73.0	
09~10	81	79	62	56	56	91.3	73.9	
10~11	81	77	60	57	55	95.9	76.6	
11~12	81	79	63	58	58	90.0	73.8	
12~13	82	81	61	57	56	93.2	74.6	
13~14	81	79	61	57	54	92.9	74.1	
14~15	79	75	60	57	57	88.6	71.5	
15~16	78	75	61	58	58	88.5	70.9	
16~17	80	77	61	58	58	88.4	73.4	
17~18	81	78	62	59	59	92.6	74.5	
18~19	81	79	62	61	58	90.9	74.4	
19~20	79	78	60	58	58	89.8	72.9	
20~21	80	78	59	55	54	91.8	73.4	
21~22	78	76	59	54	53	88.6	70.9	
22~23	79	76	56	54	53	85.0	69.9	
23~24	77	76	59	53	53	88.5	71.3	

台2省道與102甲縣道交叉口88年7月非假日振動逐時監測結果

監測日期:8/7/20 單位:dB

00~01 42 39 30 30 30 51.1 37.4 01~02 40 37 30 30 30 46.9 35.9 02~03 36 33 30 30 30 44.0 32.0 03~04 35 35 30 30 30 44.1 32.7 04~05 34 34 30 30 30 44.1 32.7 05~06 44 37 30 30 30 47.0 35.7 06~07 46 38 30 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 50.4 38.7 11~12 45 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 <th colspan="3"><u> </u></th> <th></th> <th></th> <th></th> <th></th> <th>丰四.(</th> <th></th>	<u> </u>							丰四.(
01~02 40 37 30 30 30 46.9 35.9 02~03 36 33 30 30 30 44.0 32.0 03~04 35 35 30 30 30 42.5 32.2 04~05 34 34 30 30 30 44.1 32.7 05~06 44 37 30 30 30 47.0 35.7 06~07 46 38 30 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 54.2 40.3 10~11 48 42 30 30 30 51.8 39.5 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 52.7 38.3 <th>時間L值</th> <th>L5</th> <th>L10</th> <th>L50</th> <th>L90</th> <th>L95</th> <th>Lmax</th> <th>Leq</th> <th>備註</th>	時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
02~03 36 33 30 30 30 44.0 32.0 03~04 35 35 30 30 30 42.5 32.2 04~05 34 34 30 30 30 44.1 32.7 05~06 44 37 30 30 30 47.0 35.7 06~07 46 38 30 30 30 48.0 38.6 08~09 49 42 31 30 30 49.5 39.5 10~11 48 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 51.8 39.3 12~13 47 46 30 30 30 51.8 39.3 13~14 41 37 30 30 30 49.4 39.3 15~16 42 39 30 30 30 48.9 38.1 <td>00~01</td> <td>42</td> <td>39</td> <td>30</td> <td>30</td> <td>30</td> <td>51.1</td> <td>37.4</td> <td></td>	00~01	42	39	30	30	30	51.1	37.4	
03~04 35 35 30 30 30 42.5 32.2 04~05 34 34 30 30 30 44.1 32.7 05~06 44 37 30 30 30 47.0 35.7 06~07 46 38 30 30 30 51.8 38.2 07~08 46 44 31 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 48.9 38.1 <td>01~02</td> <td>40</td> <td>37</td> <td>30</td> <td>30</td> <td>30</td> <td>46.9</td> <td>35.9</td> <td></td>	01~02	40	37	30	30	30	46.9	35.9	
04~05 34 34 30 30 30 44.1 32.7 05~06 44 37 30 30 30 47.0 35.7 06~07 46 38 30 30 30 51.8 38.2 07~08 46 44 31 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 <td>02~03</td> <td>36</td> <td>33</td> <td>30</td> <td>30</td> <td>30</td> <td>44.0</td> <td>32.0</td> <td></td>	02~03	36	33	30	30	30	44.0	32.0	
05~06 44 37 30 30 30 47.0 35.7 06~07 46 38 30 30 30 51.8 38.2 07~08 46 44 31 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 30 48.4 38.2 <td>03~04</td> <td>35</td> <td>35</td> <td>30</td> <td>30</td> <td>30</td> <td>42.5</td> <td>32.2</td> <td></td>	03~04	35	35	30	30	30	42.5	32.2	
06~07 46 38 30 30 30 51.8 38.2 07~08 46 44 31 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 <td>04~05</td> <td>34</td> <td>34</td> <td>30</td> <td>30</td> <td>30</td> <td>44.1</td> <td>32.7</td> <td></td>	04~05	34	34	30	30	30	44.1	32.7	
07~08 46 44 31 30 30 48.0 38.6 08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 <td>05~06</td> <td>44</td> <td>37</td> <td>30</td> <td>30</td> <td>30</td> <td>47.0</td> <td>35.7</td> <td></td>	05~06	44	37	30	30	30	47.0	35.7	
08~09 49 42 31 30 30 54.2 40.3 09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 48.7 36.6 16~17 41 36 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 19~20 43 42 30 30 30 49.9 37.5 20~21	06~07	46	38	30	30	30	51.8	38.2	
09~10 46 45 31 30 30 49.5 39.5 10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 48.7 36.6 16~17 41 36 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22	07~08	46	44	31	30	30	48.0	38.6	
10~11 48 42 30 30 30 50.4 38.7 11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 48.7 36.6 16~17 41 36 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 49.9 37.5 20~21 45 39 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22	08~09	49	42	31	30	30	54.2	40.3	
11~12 45 42 30 30 30 51.8 39.3 12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 48.7 36.6 16~17 41 36 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 30 51.6 38.2	09~10	46	45	31	30	30	49.5	39.5	
12~13 47 46 30 30 30 49.4 39.3 13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 30 51.6 38.2	10~11	48	42	30	30	30	50.4	38.7	
13~14 41 37 30 30 30 52.7 38.3 14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 30 51.6 38.2	11~12	45	42	30	30	30	51.8	39.3	
14~15 45 42 30 30 30 48.9 38.1 15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 30 51.6 38.2	12~13	47	46	30	30	30	49.4	39.3	
15~16 42 39 30 30 30 48.7 36.6 16~17 41 36 30 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 30 51.6 38.2	13~14	41	37	30	30	30	52.7	38.3	
16~17 41 36 30 30 30 49.4 37.3 17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 30 51.6 38.2	14~15	45	42	30	30	30	48.9	38.1	
17~18 45 43 32 30 30 48.4 38.2 18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 47.4 36.8 21~22 44 38 30 30 51.6 38.2	15~16	42	39	30	30	30	48.7	36.6	
18~19 45 44 30 30 30 51.6 39.2 19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 47.4 36.8 21~22 44 38 30 30 51.6 38.2	16~17	41	36	30	30	30	49.4	37.3	
19~20 43 42 30 30 30 49.9 37.5 20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 51.6 38.2	17~18	45	43	32	30	30	48.4	38.2	
20~21 45 39 30 30 30 47.4 36.8 21~22 44 38 30 30 51.6 38.2	18~19	45	44	30	30	30	51.6	39.2	
21~22 44 38 30 30 30 51.6 38.2	19~20	43	42	30	30	30	49.9	37.5	
	20~21	45	39	30	30	30	47.4	36.8	
22~23 45 39 30 30 50.6 38.6	21~22	44	38	30	30	30	51.6	38.2	
	22~23	45	39	30	30	30	50.6	38.6	
23~24 43 39 30 30 30 49.4 37.8	23~24	43	39	30	30	30	49.4	37.8	

台2省道與102甲縣道交叉口88年7月假日噪音逐時監測結果

監測日期: 88/7/31 單位: dB(A)

監測日期:	88/7/31						單位:c	B(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	84	72	57	54	53	87.5	74.1	
01~02	79	73	57	54	53	91.2	72.9	
02~03	79	72	57	53	52	89.7	73.4	
03~04	77	73	57	52	52	88.8	71.7	
04~05	77	73	57	52	52	88.2	72.2	
05~06	80	77	58	52	52	85.7	71.4	
06~07	81	77	57	54	54	85.3	71.8	
07~08	81	75	61	55	54	88.6	73.6	
08~09	80	77	61	55	54	85.3	71.9	
09~10	83	77	61	56	54	87.6	73.8	
10~11	83	76	61	57	55	89.4	75.1	
11~12	82	80	62	59	57	90.5	75.7	
12~13	83	77	63	58	55	90.3	75.0	
13~14	80	77	62	58	57	89.5	73.8	
14~15	80	77	60	58	57	88.2	74.4	
15~16	82	75	62	57	55	89.6	73.8	
16~17	78	75	63	59	58	84.9	71.8	
17~18	80	80	63	61	58	89.2	75.0	
18~19	83	81	64	61	59	88.6	75.4	
19~20	82	77	62	60	58	87.8	74.8	
20~21	82	77	61	58	58	87.5	74.0	
21~22	79	77	61	57	55	85.7	72.6	
22~23	80	77	60	57	56	86.1	72.3	
23~24	78	74	60	56	56	89.0	72.3	

台2省道與102甲縣道交叉口88年7月假日振動逐時監測結果

監測日期: 88/7/31

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	47	40	30	30	30	52.4	39.5	
01~02	45	40	30	30	30	49.2	37.7	
02~03	38	34	30	30	30	46.9	34.1	
03~04	42	37	30	30	30	46.5	35.2	
04~05	38	37	30	30	30	46.8	34.9	
05~06	45	37	31	30	30	49.5	37.5	
06~07	45	40	30	30	30	51.3	38.3	
07~08	45	43	30	30	30	53.9	39.5	
08~09	45	44	30	30	30	49.0	38.0	
09~10	44	42	30	30	30	51.0	37.8	
10~11	44	43	30	30	30	50.6	37.8	
11~12	44	41	30	30	30	49.7	37.5	
12~13	46	43	30	30	30	48.9	38.4	
13~14	45	43	30	30	30	49.2	38.2	
14~15	46	40	30	30	30	53.1	39.5	
15~16	46	45	30	30	30	49.2	38.9	
16~17	42	41	30	30	30	52.5	38.4	
17~18	47	42	30	30	30	49.5	38.4	
18~19	46	43	30	30	30	49.5	38.7	
19~20	45	44	30	30	30	49.8	38.1	
20~21	45	37	30	30	30	48.9	36.8	
21~22	43	39	30	30	30	52.3	38.3	
22~23	40	36	30	30	30	49.1	35.8	
23~24	39	35	30	30	30	48.4	34.2	

鹽寮海濱公園88年7月非假日噪音逐時監測結果

監測日期: 88/7/20

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	78	75	56	52	51	87.6	71.2	
01~02	76	71	56	52	51	88.6	69.2	
02~03	77	76	56	52	51	87.7	69.8	
03~04	77	74	56	52	52	85.9	69.1	
04~05	76	71	52	51	51	82.9	67.8	
05~06	74	70	53	52	52	84.2	67.4	
06~07	75	72	55	54	54	88.7	68.8	
07~08	78	77	60	58	57	89.1	72.0	
08~09	80	77	60	56	55	86.8	71.4	
09~10	79	76	60	58	57	88.4	71.4	
10~11	79	76	62	59	56	86.0	71.4	
11~12	81	79	61	59	58	88.0	73.1	
12~13	80	77	61	58	56	88.1	72.8	
13~14	79	77	62	59	58	91.5	72.6	
14~15	80	75	61	59	57	92.9	74.0	
15~16	77	70	61	58	56	94.0	73.3	
16~17	81	78	62	60	58	87.6	71.8	
17~18	81	79	61	61	58	89.3	73.6	
18~19	81	79	63	60	59	86.5	73.8	
19~20	80	78	63	58	58	89.7	72.4	
20~21	78	75	60	56	55	90.1	71.6	
21~22	79	76	60	55	55	83.7	70.3	
22~23	78	75	60	54	54	88.1	71.3	
23~24	77	73	59	54	53	84.9	69.5	

鹽寮海濱公園88年7月非假日振動逐時監測結果

監測日期: 88/7/20

田川口 芝・								. 40
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	39	34	30	30	30	47.5	34.5	
01~02	34	33	30	30	30	46.0	32.7	
02~03	35	34	30	30	30	39.6	31.9	
03~04	37	34	30	30	30	38.4	31.6	
04~05	35	33	30	30	30	43.1	31.8	
05~06	34	34	30	30	30	39.2	31.4	
06~07	38	34	30	30	30	43.6	32.5	
07~08	38	37	30	30	30	46.5	34.0	
08~09	35	34	30	30	30	42.3	32.0	
09~10	35	34	30	30	30	40.3	32.0	
10~11	40	38	30	30	30	44.8	34.1	
11~12	35	34	30	30	30	43.4	32.4	
12~13	35	34	30	30	30	45.0	32.6	
13~14	35	33	30	30	30	46.8	33.9	
14~15	37	34	30	30	30	42.0	32.4	
15~16	37	34	30	30	30	45.6	33.1	
16~17	35	34	30	30	30	42.0	32.3	
17~18	37	36	30	30	30	42.5	32.9	
18~19	39	37	31	30	30	46.1	34.9	
19~20	38	38	31	30	30	43.9	34.4	
20~21	39	36	30	30	30	47.2	34.1	
21~22	33	33	30	30	30	42.8	31.9	
22~23	35	33	30	30	30	39.3	31.6	
23~24	37	34	30	30	30	43.7	32.8	

鹽寮海濱公園88年7月假日噪音逐時監測結果

歐測口期 · 88/7/31 留位・dR(A)

監測日期:	88/7/31						單位:c	B(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	71	70	49	49	48	86.5	65.7	
01~02	71	70	50	47	47	89.6	67.5	
02~03	72	71	50	49	47	92.1	69.9	
03~04	73	71	50	48	48	94.0	69.6	
04~05	71	71	48	48	47	89.3	68.2	
05~06	74	73	50	48	48	89.8	69.2	
06~07	71	70	50	49	49	92.7	68.4	
07~08	73	72	51	50	49	95.1	70.1	
08~09	74	73	52	50	50	90.3	70.1	
09~10	74	74	53	50	50	76.5	69.1	
10~11	75	74	52	51	51	89.8	70.0	
11~12	76	75	52	52	51	92.3	72.3	
12~13	75	75	53	52	51	93.4	72.1	
13~14	75	74	53	52	52	86.4	69.2	
14~15	74	73	52	52	52	90.5	69.3	
15~16	73	72	69	51	51	76.2	68.4	
16~17	71	70	52	51	51	73.0	65.8	
17~18	71	71	54	51	51	88.8	68.2	
18~19	73	73	52	51	51	91.6	68.7	
19~20	74	73	52	51	51	98.3	72.1	
20~21	71	71	48	47	47	74.7	65.6	
21~22	72	70	48	47	47	89.5	66.7	
22~23	73	72	48	48	47	89.4	68.0	
23~24	72	71	48	47	47	88.9	67.5	

鹽寮海濱公園88年7月假日振動逐時監測結果

監測日期 88/7/31 單位:dB

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	35	32	30	30	30	46.6	32.0	
01~02	35	31	30	30	30	47.6	32.2	
02~03	35	31	30	30	30	40.8	31.4	
03~04	34	32	30	30	30	43.0	31.2	
04~05	34	32	30	30	30	45.8	32.1	
05~06	36	33	30	30	30	43.8	31.9	
06~07	34	32	30	30	30	41.4	31.4	
07~08	34	32	30	30	30	41.1	31.3	
08~09	35	32	30	30	30	42.8	31.3	
09~10	36	32	30	30	30	41.1	31.6	
10~11	36	33	30	30	30	45.3	32.4	
11~12	34	32	30	30	30	46.1	31.9	
12~13	36	32	31	30	30	42.0	31.9	
13~14	37	33	30	30	30	44.7	32.2	
14~15	37	33	30	30	30	45.1	32.5	
15~16	33	32	31	30	30	40.1	31.2	
16~17	35	34	31	30	30	42.9	32.0	
17~18	33	32	30	30	30	38.8	30.8	
18~19	38	34	30	30	30	45.2	32.4	
19~20	36	33	30	30	30	44.9	32.0	
20~21	35	33	30	30	30	40.5	31.4	
21~22	34	33	30	30	30	46.3	32.0	
22~23	36	33	30	30	30	46.8	32.7	
23~24	35	32	30	30	30	42.6	31.4	

福隆街上88年7月非假日噪音逐時監測結果

監測日期: 88/7/20 單位: dB(A)

監測日期:	88/7/20						單位:c	B(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	76	72	55	51	50	81.1	67.9	
01~02	76	73	54	50	49	83.4	69.4	
02~03	76	73	54	51	49	83.2	68.9	
03~04	77	71	58	51	50	82.8	69.0	
04~05	77	74	56	50	50	82.2	69.3	
05~06	78	75	54	50	49	83.7	70.0	
06~07	76	73	58	53	51	84.4	70.5	
07~08	79	78	59	52	51	82.8	72.3	
08~09	77	75	66	53	50	82.7	71.9	
09~10	79	78	69	54	52	85.3	73.0	
10~11	78	76	68	56	55	84.1	72.4	
11~12	78	77	67	56	55	85.1	73.1	
12~13	80	77	70	57	55	85.2	74.1	
13~14	80	79	69	58	58	84.0	74.2	
14~15	78	78	68	58	57	82.7	72.9	
15~16	79	79	68	61	58	83.8	73.3	
16~17	79	78	62	58	57	82.8	72.2	
17~18	77	77	68	55	51	83.5	72.7	
18~19	79	78	69	58	56	82.7	73.2	
19~20	78	75	63	52	50	82.0	71.4	
20~21	76	74	61	55	54	83.1	70.0	
21~22	74	73	57	54	53	84.3	69.6	
22~23	75	72	57	54	53	83.3	69.3	
23~24	73	73	56	53	52	83.6	69.2	

福隆街上88年7月非假日振動逐時監測結果

監測日期 88/7/20

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	38	36	30	30	30	52.9	36.3	
01~02	43	40	30	30	30	55.5	37.9	
02~03	39	38	30	30	30	54.7	37.7	
03~04	43	40	31	30	30	60.3	40.8	
04~05	41	38	30	30	30	56.6	37.6	
05~06	40	38	30	30	30	57.0	37.6	
06~07	37	34	30	30	30	56.7	37.3	
07~08	44	41	30	30	30	58.7	41.3	
08~09	40	39	30	30	30	56.3	39.6	
09~10	36	35	30	30	30	51.3	35.4	
10~11	44	43	30	30	30	51.6	38.3	
11~12	46	41	31	30	30	59.8	42.6	
12~13	46	40	30	30	30	60.9	43.1	
13~14	45	39	30	30	30	57.3	40.5	
14~15	46	40	30	30	30	63.6	45.5	
15~16	46	40	30	30	30	57.2	41.5	
16~17	42	40	30	30	30	50.9	37.5	
17~18	42	37	30	30	30	59.2	41.5	
18~19	44	35	30	30	30	56.2	39.7	
19~20	43	37	30	30	30	57.0	39.7	
20~21	42	37	30	30	30	50.2	36.3	
21~22	39	33	30	30	30	50.4	36.1	
22~23	39	34	30	30	30	50.5	36.1	
23~24	38	35	30	30	30	50.5	35.8	

福隆街上88年7月假日噪音逐時監測結果

監測日期: 88/7/31 單位: dB(A)

監測日期:	88/7/31						單位:c	IB(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	72	71	49	43	43	80.0	66.3	
01~02	72	71	54	48	47	79.5	67.1	
02~03	72	71	52	49	48	85.8	67.3	
03~04	71	70	52	51	51	79.4	65.8	
04~05	73	72	52	49	47	88.2	69.2	
05~06	73	72	50	46	46	83.0	68.3	
06~07	72	72	50	45	43	78.7	66.3	
07~08	74	74	53	50	50	82.4	68.9	
08~09	73	73	54	49	49	81.0	68.3	
09~10	73	72	54	51	51	82.4	67.8	
10~11	74	74	70	52	51	81.0	70.4	
11~12	76	75	67	50	50	82.7	70.9	
12~13	76	75	71	50	49	84.7	71.3	
13~14	75	75	67	51	51	83.7	70.8	
14~15	75	75	71	52	51	88.0	71.2	
15~16	74	73	70	50	50	86.2	69.8	
16~17	74	73	70	52	52	86.7	70.0	
17~18	73	73	70	53	53	82.6	69.7	
18~19	77	76	71	55	55	91.5	73.6	
19~20	77	76	64	54	54	83.0	71.7	
20~21	74	74	57	54	51	90.3	70.5	
21~22	74	73	56	51	49	89.1	69.9	
22~23	72	72	56	52	51	86.6	67.7	
23~24	72	71	56	51	50	90.1	70.5	

福隆街上88年7月假日振動逐時監測結果

監測日期 88/7/31

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	42	39	30	30	30	50.6	36.1	
01~02	43	39	31	30	30	52.1	36.5	
02~03	46	41	30	30	30	51.2	37.4	
03~04	45	40	30	30	30	53.5	37.9	
04~05	45	41	30	30	30	54.8	37.8	
05~06	47	41	30	30	30	52.5	38.6	
06~07	45	41	31	30	30	50.8	36.9	
07~08	45	41	30	30	30	52.5	37.9	
08~09	47	42	31	30	30	55.9	39.6	
09~10	47	43	31	30	30	52.6	39.0	
10~11	49	44	30	30	30	56.3	40.9	
11~12	48	43	30	30	30	52.8	39.2	
12~13	44	42	31	30	30	51.8	37.5	
13~14	48	45	31	30	30	54.6	39.5	
14~15	46	45	31	30	30	54.4	40.0	
15~16	48	44	31	30	30	53.5	39.7	
16~17	48	43	30	30	30	53.8	39.1	
17~18	44	40	31	30	30	50.7	37.8	
18~19	49	43	31	30	30	53.0	39.8	
19~20	45	42	31	30	30	51.4	37.8	
20~21	44	40	30	30	30	49.6	36.2	
21~22	44	41	32	30	30	50.1	36.9	
22~23	46	41	30	30	30	53.8	38.1	
23~24	42	38	30	30	30	48.4	35.0	

102縣道新社橋88年7月非假日噪音逐時監測結果

102縣道之新社橋88年7月非假日振動逐時監測結果

監測日期:	88/7/21	•	•	1	•	•	單位:d	IB(A)
 	T 5	T 10	T 50	T 00	T 05	I mar	Tax	<i>6</i> #±±÷

						1		
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	71	69	47	46	46	77.9	63.3	
01~02	71	70	48	46	46	78.8	62.9	
02~03	65	55	48	47	47	70.6	57.5	
03~04	64	59	48	47	47	74.5	57.5	
04~05	64	52	47	47	47	73.1	56.6	
05~06	52	48	47	46	46	70.7	52.8	
06~07	59	53	46	45	45	70.0	54.0	
07~08	63	57	48	47	47	75.6	58.6	
08~09	69	63	48	45	45	76.5	61.4	
09~10	71	59	49	47	47	77.6	62.0	
10~11	70	67	49	47	46	81.3	63.8	
11~12	68	62	49	47	46	76.9	60.8	
12~13	68	62	50	48	47	76.4	60.6	
13~14	68	66	52	50	49	77.8	62.8	
14~15	68	65	51	49	49	74.9	61.9	
15~16	73	68	51	49	48	78.3	63.4	
16~17	68	64	51	48	48	73.7	60.1	
17~18	68	63	50	48	47	78.7	62.5	
18~19	68	64	51	48	48	78.7	62.7	
19~20	66	62	52	49	47	76.2	60.8	
20~21	62	59	50	48	47	73.4	57.0	
21~22	60	54	51	47	46	77.2	57.6	
22~23	55	52	50	47	47	77.0	58.1	
23~24	60	52	47	45	45	74.5	57.5	

監測日期: 88/7/21	單位:dB

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	32	30	30	30	30	48.9	33.4	
01~02	31	30	30	30	30	40.8	30.8	
02~03	30	30	30	30	30	41.0	30.6	
03~04	30	30	30	30	30	40.7	30.6	
04~05	30	30	30	30	30	41.2	30.6	
05~06	30	30	30	30	30	37.6	30.2	
06~07	30	30	30	30	30	40.5	30.5	
07~08	32	30	30	30	30	44.8	31.7	
08~09	30	30	30	30	30	39.5	30.5	
09~10	37	31	30	30	30	48.1	33.2	
10~11	33	32	30	30	30	37.9	31.1	
11~12	35	31	30	30	30	46.5	32.4	
12~13	30	30	30	30	30	46.0	31.9	
13~14	33	31	30	30	30	47.3	32.6	
14~15	33	32	30	30	30	47.4	32.7	
15~16	38	34	30	30	30	49.9	34.4	
16~17	34	30	30	30	30	48.9	33.3	
17~18	34	33	30	30	30	42.7	31.6	
18~19	36	35	30	30	30	48.0	33.4	
19~20	33	30	30	30	30	43.9	31.7	
20~21	30	30	30	30	30	41.0	30.6	
21~22	30	30	30	30	30	38.8	30.4	
22~23	30	30	30	30	30	38.0	30.5	
23~24	30	30	30	30	30	43.4	31.1	

102縣道之新社橋88年7月假日噪音逐時監測結果

102縣道之新社橋88年7月假日振動逐時監測結果

監測日期:	88/8/1						單位:d	B(A)
 	T 5	T 10	T 50	T 00	T 05	I mor	Tag	##±±÷

								. ,
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	61	56	42	37	36	75.4	55.7	
01~02	60	54	40	36	36	82.0	57.5	
02~03	64	57	39	36	36	86.5	62.0	
03~04	62	56	41	37	37	76.9	57.5	
04~05	68	62	42	37	36	78.7	61.1	
05~06	68	62	43	38	38	87.5	64.0	
06~07	69	65	48	41	40	84.9	62.0	
07~08	70	64	44	37	37	91.9	66.8	
08~09	63	59	53	44	43	77.8	59.3	
09~10	68	63	50	37	37	95.5	65.2	
10~11	69	65	51	43	41	85.5	63.7	
11~12	65	59	44	39	38	94.0	62.1	
12~13	70	65	46	39	38	78.4	62.3	
13~14	69	66	51	38	36	81.6	62.8	
14~15	69	66	46	41	40	86.1	63.1	
15~16	62	57	46	44	43	75.7	57.5	
16~17	71	66	47	41	40	88.9	64.9	
17~18	71	66	48	40	39	87.5	64.2	
18~19	71	67	52	39	38	83.6	64.4	
19~20	66	61	44	39	38	78.4	60.0	
20~21	62	56	42	40	39	79.4	57.2	
21~22	69	64	48	45	45	86.6	64.4	
22~23	69	63	49	46	45	84.9	63.5	
23~24	68	64	47	45	45	88.9	62.8	

監測日期: 88/8/1	單位:dB
	#1// OB

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	38.0	30.3	
01~02	30	30	30	30	30	48.4	31.2	
02~03	30	30	30	30	30	40.4	30.3	
03~04	30	30	30	30	30	46.3	31.1	
04~05	32	30	30	30	30	42.9	30.7	
05~06	32	30	30	30	30	51.8	32.8	
06~07	34	31	30	30	30	47.9	31.2	
07~08	33	31	30	30	30	48.4	31.6	
08~09	30	30	30	30	30	30.0	30.0	
09~10	30	30	30	30	30	35.7	30.1	
10~11	38	31	30	30	30	56.4	36.5	
11~12	31	30	30	30	30	39.8	30.4	
12~13	36	32	30	30	30	43.7	31.6	
13~14	36	32	30	30	30	47.2	31.9	
14~15	35	31	30	30	30	43.0	31.1	
15~16	30	30	30	30	30	39.7	30.5	
16~17	35	31	30	30	30	49.4	32.2	
17~18	36	32	30	30	30	53.2	33.4	
18~19	37	34	30	30	30	49.0	32.8	
19~20	33	30	30	30	30	54.3	33.9	
20~21	30	30	30	30	30	37.3	30.2	
21~22	35	32	30	30	30	47.7	31.9	
22~23	38	31	30	30	30	51.4	34.0	
23~24	38	32	30	30	30	53.2	34.4	

過港部落88年7月非假日噪音逐時監測結果

監測日期 88/7/21 單位:dB(A)

監測日期8	8/7/21						單位:c	IB(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	66	64	50	44	43	71.8	59.5	
01~02	65	50	50	43	42	73.5	58.7	
02~03	64	51	49	45	43	70.9	57.4	
03~04	62	56	50	42	42	67.8	56.2	
04~05	63	59	49	43	43	70.5	57.0	
05~06	63	63	50	47	44	71.7	58.3	
06~07	65	52	51	49	49	70.8	58.4	
07~08	65	59	52	48	48	71.9	59.3	
08~09	67	62	53	51	49	71.9	60.3	
09~10	67	65	53	52	51	73.4	60.9	
10~11	67	61	54	52	50	73.2	60.7	
11~12	66	61	55	54	52	71.6	59.9	
12~13	68	63	55	51	51	73.2	61.0	
13~14	66	64	55	52	50	73.7	60.8	
14~15	64	59	55	51	51	72.0	58.9	
15~16	66	61	55	53	51	71.2	59.9	
16~17	69	64	56	52	52	73.5	61.7	
17~18	69	61	57	53	51	73.2	61.5	
18~19	68	65	57	54	51	70.8	61.0	
19~20	67	63	53	50	49	73.2	60.8	
20~21	62	61	52	47	45	70.5	57.1	
21~22	64	53	49	46	45	70.0	56.9	
22~23	61	52	50	46	43	69.2	55.9	
23~24	65	60	50	45	43	71.5	58.1	

過港部落88年7月非假日振動逐時監測結果

監測日期 88/7/21

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	30.9	30.0	
01~02	30	30	30	30	30	36.1	30.2	
02~03	30	30	30	30	30	30.0	30.0	
03~04	30	30	30	30	30	30.0	30.0	
04~05	30	30	30	30	30	30.9	30.0	
05~06	31	30	30	30	30	36.5	30.3	
06~07	32	31	30	30	30	36.7	30.5	
07~08	33	32	30	30	30	38.2	31.0	
08~09	33	32	30	30	30	38.3	31.0	
09~10	33	32	30	30	30	37.1	30.9	
10~11	30	30	30	30	30	30.0	30.0	
11~12	34	33	30	30	30	37.3	31.1	
12~13	31	30	30	30	30	37.3	30.0	
13~14	30	30	30	30	30	34.6	30.2	
14~15	32	30	30	30	30	36.6	30.5	
15~16	30	30	30	30	30	30.0	30.0	
16~17	33	32	30	30	30	38.3	30.8	
17~18	33	32	30	30	30	35.8	30.7	
18~19	33	32	30	30	30	36.1	30.8	
19~20	30	30	30	30	30	36.6	30.3	
20~21	30	30	30	30	30	31.0	30.0	
21~22	30	30	30	30	30	30.0	30.0	
22~23	30	30	30	30	30	30.0	30.0	
23~24	30	30	30	30	30	30.0	30.0	

過港部落88年7月假日噪音逐時監測結果

監測日期 88/8/1 單位:dB(A)

8/8/1						₽₩.0	D(A)
L5	L10	L50	L90	L95	Lmax	Leq	備註
67	64	50	50	50	73.3	60.6	
65	62	53	50	50	74.7	60.4	
64	61	51	46	44	69.0	57.8	
67	62	50	45	44	72.9	59.4	
64	62	50	46	45	65.9	56.2	
67	61	53	47	45	70.8	59.4	
68	66	52	51	50	72.7	60.7	
69	68	57	52	52	75.0	62.7	
67	67	57	53	52	74.2	62.4	
69	66	57	54	53	75.4	63.7	
72	66	57	53	52	77.1	64.9	
70	68	57	53	53	76.9	64.4	
70	69	58	54	53	75.5	63.9	
69	68	58	55	52	73.7	63.5	
69	68	60	54	52	76.5	64.7	
70	69	58	55	52	77.1	65.0	
72	67	58	55	52	75.3	64.6	
71	69	60	57	53	78.0	65.9	
70	68	58	53	53	74.5	63.6	
70	68	57	53	52	75.7	64.1	
65	65	54	52	52	75.1	61.3	
68	61	53	52	52	72.2	60.1	
65	65	55	52	52	72.8	61.0	
66	66	53	52	52	74.9	60.5	
	1.5 67 65 64 67 68 69 67 69 72 70 70 69 69 72 71 70 70 65 68 65	67 64 65 62 64 61 67 62 64 62 67 61 68 66 69 68 67 67 69 66 72 66 70 68 70 69 69 68 70 69 72 67 71 69 70 68 70 68 70 68 70 68 70 68 70 68	L5 L10 L50 67 64 50 65 62 53 64 61 51 67 62 50 64 62 50 67 61 53 68 66 52 69 68 57 67 67 57 69 66 57 70 68 57 70 69 58 69 68 60 70 69 58 72 67 58 71 69 60 70 68 58 71 69 60 70 68 58 70 68 58 70 68 58 70 68 58 70 68 58 70 68 58 70 68 58 <td>L5 L10 L50 L90 67 64 50 50 65 62 53 50 64 61 51 46 67 62 50 45 64 62 50 46 67 61 53 47 68 66 52 51 69 68 57 52 67 67 57 53 69 66 57 54 72 66 57 53 70 68 57 53 70 69 58 54 69 68 60 54 70 69 58 55 72 67 58 55 71 69 60 57 70 68 58 53 70 68 58 53 70 68</td> <td>L5 L10 L50 L90 L95 67 64 50 50 50 65 62 53 50 50 64 61 51 46 44 67 62 50 45 44 64 62 50 46 45 67 61 53 47 45 68 66 52 51 50 69 68 57 52 52 67 67 57 53 52 69 66 57 54 53 72 66 57 53 52 70 68 57 53 53 70 69 58 54 53 69 68 60 54 52 70 69 58 55 52 72 67 58 55 52</td> <td>L5 L10 L50 L90 L95 Lmax 67 64 50 50 50 73.3 65 62 53 50 50 74.7 64 61 51 46 44 69.0 67 62 50 45 44 72.9 64 62 50 46 45 65.9 67 61 53 47 45 70.8 68 66 52 51 50 72.7 69 68 57 52 52 75.0 67 67 57 53 52 74.2 69 66 57 53 52 77.1 70 68 57 53 52 77.1 70 69 58 54 53 75.5 69 68 58 55 52 77.1 72 67 58<td>L5 L10 L50 L90 L95 Lmax Leq 67 64 50 50 50 73.3 60.6 65 62 53 50 50 74.7 60.4 64 61 51 46 44 69.0 57.8 67 62 50 45 44 72.9 59.4 64 62 50 46 45 65.9 56.2 67 61 53 47 45 70.8 59.4 68 66 52 51 50 72.7 60.7 69 68 57 52 52 75.0 62.7 67 67 57 53 52 74.2 62.4 69 66 57 54 53 75.4 63.7 72 66 57 53 52 77.1 64.9 70 69 58 54<!--</td--></td></td>	L5 L10 L50 L90 67 64 50 50 65 62 53 50 64 61 51 46 67 62 50 45 64 62 50 46 67 61 53 47 68 66 52 51 69 68 57 52 67 67 57 53 69 66 57 54 72 66 57 53 70 68 57 53 70 69 58 54 69 68 60 54 70 69 58 55 72 67 58 55 71 69 60 57 70 68 58 53 70 68 58 53 70 68	L5 L10 L50 L90 L95 67 64 50 50 50 65 62 53 50 50 64 61 51 46 44 67 62 50 45 44 64 62 50 46 45 67 61 53 47 45 68 66 52 51 50 69 68 57 52 52 67 67 57 53 52 69 66 57 54 53 72 66 57 53 52 70 68 57 53 53 70 69 58 54 53 69 68 60 54 52 70 69 58 55 52 72 67 58 55 52	L5 L10 L50 L90 L95 Lmax 67 64 50 50 50 73.3 65 62 53 50 50 74.7 64 61 51 46 44 69.0 67 62 50 45 44 72.9 64 62 50 46 45 65.9 67 61 53 47 45 70.8 68 66 52 51 50 72.7 69 68 57 52 52 75.0 67 67 57 53 52 74.2 69 66 57 53 52 77.1 70 68 57 53 52 77.1 70 69 58 54 53 75.5 69 68 58 55 52 77.1 72 67 58 <td>L5 L10 L50 L90 L95 Lmax Leq 67 64 50 50 50 73.3 60.6 65 62 53 50 50 74.7 60.4 64 61 51 46 44 69.0 57.8 67 62 50 45 44 72.9 59.4 64 62 50 46 45 65.9 56.2 67 61 53 47 45 70.8 59.4 68 66 52 51 50 72.7 60.7 69 68 57 52 52 75.0 62.7 67 67 57 53 52 74.2 62.4 69 66 57 54 53 75.4 63.7 72 66 57 53 52 77.1 64.9 70 69 58 54<!--</td--></td>	L5 L10 L50 L90 L95 Lmax Leq 67 64 50 50 50 73.3 60.6 65 62 53 50 50 74.7 60.4 64 61 51 46 44 69.0 57.8 67 62 50 45 44 72.9 59.4 64 62 50 46 45 65.9 56.2 67 61 53 47 45 70.8 59.4 68 66 52 51 50 72.7 60.7 69 68 57 52 52 75.0 62.7 67 67 57 53 52 74.2 62.4 69 66 57 54 53 75.4 63.7 72 66 57 53 52 77.1 64.9 70 69 58 54 </td

過港部落88年7月假日振動逐時監測結果

監測日期 88/8/1

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	32	31	30	30	30	33.4	30.4	
01~02	30	30	30	30	30	35.6	30.3	
02~03	30	30	30	30	30	30.0	30.0	
03~04	30	30	30	30	30	30.0	30.0	
04~05	30	30	30	30	30	30.0	30.0	
05~06	30	30	30	30	30	32.1	30.1	
06~07	30	30	30	30	30	36.1	30.2	
07~08	33	32	30	30	30	35.1	30.8	
08~09	32	31	30	30	30	35.3	30.7	
09~10	34	34	30	30	30	35.0	31.2	
10~11	34	33	30	30	30	38.3	31.3	
11~12	34	34	30	30	30	38.7	31.4	
12~13	34	34	30	30	30	40.1	31.6	
13~14	33	31	30	30	30	35.1	30.7	
14~15	35	34	30	30	30	38.8	31.6	
15~16	34	34	30	30	30	38.7	31.6	
16~17	35	34	30	30	30	35.5	31.5	
17~18	35	34	30	30	30	39.8	32.1	
18~19	35	34	30	30	30	40.8	32.3	
19~20	33	33	30	30	30	39.9	31.4	
20~21	34	33	30	30	30	35.0	30.8	
21~22	31	30	30	30	30	33.1	30.2	
22~23	30	30	30	30	30	33.5	30.2	
23~24	30	30	30	30	30	36.7	30.3	

台2省道與102甲縣道交叉口88年8月非假日噪音逐時監測結果

監測日期: 88/8/16 單位: dB(A)

監測日期:	88/8/16						單位:d	B(A)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	73	68	52	48	46	86.3	70.2	
01~02	77	72	51	47	46	85.6	68.9	
02~03	74	64	50	45	45	83.2	68.3	
03~04	74	73	51	45	45	86.7	67.9	
04~05	77	72	49	46	45	84.3	67.7	
05~06	78	75	49	45	45	86.7	69.8	
06~07	69	64	51	48	48	82.7	66.3	
07~08	76	71	54	51	51	82.3	69.5	
08~09	78	74	53	50	50	87.0	71.0	
09~10	76	74	53	52	52	83.2	69.8	
10~11	80	76	52	50	50	83.2	70.3	
11~12	79	75	55	53	52	86.6	70.8	
12~13	78	72	54	52	51	87.8	70.5	
13~14	79	73	54	53	52	89.3	71.1	
14~15	78	75	53	51	49	92.6	72.5	
15~16	78	70	55	51	50	87.0	70.4	
16~17	78	77	55	52	51	86.8	70.0	
17~18	80	76	55	51	50	89.3	71.7	
18~19	77	74	55	51	50	87.8	70.8	
19~20	74	73	56	52	51	86.8	70.0	
20~21	76	73	52	50	49	87.6	69.6	
21~22	71	68	52	51	51	87.2	68.1	
22~23	73	70	51	50	50	83.3	67.4	
23~24	74	68	52	51	50	86.0	67.5	

台2省道與102甲縣道交叉口88年8月非假日振動逐時監測結果

監測日期: 88/8/16 單位:dB

监侧口别,	1				1		· ub	
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	39	37	30	30	30	44.6	34.2	
01~02	37	34	30	30	30	43.5	32.9	
02~03	42	40	30	30	30	52.0	37.7	
03~04	37	34	30	30	30	44.4	32.9	
04~05	37	35	30	30	30	48.3	35.0	
05~06	37	36	30	30	30	46.6	34.5	
06~07	41	37	30	30	30	46.8	34.9	
07~08	44	40	30	30	30	45.8	36.0	
08~09	38	36	30	30	30	46.0	33.8	
09~10	36	34	30	30	30	45.3	34.1	
10~11	38	37	30	30	30	46.1	34.3	
11~12	41	38	30	30	30	46.1	35.0	
12~13	40	39	30	30	30	44.6	34.7	
13~14	39	38	30	30	30	45.7	34.8	
14~15	40	38	30	30	30	46.3	35.0	
15~16	41	36	30	30	30	48.7	36.2	
16~17	42	37	30	30	30	47.1	35.7	
17~18	41	39	30	30	30	47.1	35.2	
18~19	39	38	30	30	30	46.3	35.1	
19~20	40	35	30	30	30	46.4	34.9	
20~21	38	34	30	30	30	45.7	33.7	
21~22	34	33	30	30	30	43.5	32.3	
22~23	36	33	30	30	30	45.0	32.6	
23~24	35	32	30	30	30	45.7	32.6	

台2省道與102甲縣道交叉口88年8月假日噪音逐時監測結果

監測日期: 88/8/15 單位:dB(A)

時間上値
01~02 80 76 54 51 50 84.4 72.4 02~03 75 69 51 50 50 81.5 68.9 03~04 79 68 51 50 50 83.7 68.8 04~05 76 72 50 49 49 85.2 71.0 05~06 76 63 53 51 51 85.0 69.4 06~07 78 74 53 50 50 83.8 71.6 07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9
02~03 75 69 51 50 50 81.5 68.9 03~04 79 68 51 50 50 83.7 68.8 04~05 76 72 50 49 49 85.2 71.0 05~06 76 63 53 51 51 85.0 69.4 06~07 78 74 53 50 50 83.8 71.6 07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9
03~04 79 68 51 50 50 83.7 68.8 04~05 76 72 50 49 49 85.2 71.0 05~06 76 63 53 51 51 85.0 69.4 06~07 78 74 53 50 50 83.8 71.6 07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3
04~05 76 72 50 49 49 85.2 71.0 05~06 76 63 53 51 51 85.0 69.4 06~07 78 74 53 50 50 83.8 71.6 07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
05~06 76 63 53 51 51 85.0 69.4 06~07 78 74 53 50 50 83.8 71.6 07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
06~07 78 74 53 50 50 83.8 71.6 07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
07~08 79 71 55 54 51 83.4 70.5 08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
08~09 79 76 54 52 51 84.0 71.7 09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
09~10 81 79 55 51 51 84.0 72.9 10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
10~11 80 69 55 52 51 84.2 71.7 11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
11~12 79 73 55 50 50 83.7 70.8 12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
12~13 82 76 54 52 51 87.3 72.9 13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
13~14 76 73 55 50 50 88.2 71.3 14~15 80 71 55 51 51 84.3 70.5
14~15 80 71 55 51 51 84.3 70.5
15~16 79 7 54 52 51 83.9 70.0
1 10 10 17 1 07 02 01 00.7 70.0
16~17 78 75 54 51 51 84.9 70.1
17~18 80 78 54 52 51 87.8 71.7
18~19 80 76 54 53 53 87.4 71.4
19~20 78 77 54 53 50 89.2 71.7
20~21 77 66 51 50 50 83.2 69.5
21~22 74 64 52 51 51 83.6 68.3
22~23 78 74 52 49 49 83.6 69.0
23~24 79 70 53 51 50 82.9 69.2

台2省道與102甲縣道交叉口88年8月假日振動逐時監測結果

監測日期: 88/8/15 單位: dB

监侧口别:	00,0,10						714	· ub
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	37	36	30	30	30	46.0	34.0	
01~02	36	33	30	30	30	46.0	33.2	
02~03	35	33	30	30	30	45.5	32.7	
03~04	35	34	30	30	30	45.2	32.6	
04~05	32	32	30	30	30	44.6	32.1	
05~06	37	36	30	30	30	46.6	34.3	
06~07	43	39	30	30	30	45.7	35.4	
07~08	41	39	30	30	30	46.6	35.6	
08~09	42	39	30	30	30	49.9	36.5	
09~10	44	43	30	30	30	48.6	37.9	
10~11	43	43	30	30	30	45.8	36.4	
11~12	42	42	30	30	30	50.0	37.3	
12~13	42	38	30	30	30	45.8	35.4	
13~14	41	36	30	30	30	46.1	35.1	
14~15	41	39	30	30	30	47.6	35.8	
15~16	42	41	30	30	30	48.7	36.7	
16~17	42	37	30	30	30	47.3	35.7	
17~18	43	41	31	30	30	50.6	38.3	
18~19	43	40	30	30	30	47.9	36.8	
19~20	42	39	30	30	30	46.7	35.3	
20~21	41	38	30	30	30	44.3	34.4	
21~22	41	35	30	30	30	44.8	33.7	
22~23	36	34	30	30	30	45.7	33.3	
23~24	36	33	30	30	30	42.7	32.4	

鹽寮海濱公園88年8月非假日噪音逐時監測結果

監測日期: 88/8/16

時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	72	71	52	48	48	81.1	66.2	
01~02	72	70	54	50	48	81.8	66.2	
02~03	71	70	54	49	48	81.6	65.9	
03~04	70	68	52	49	48	81.0	65.3	
04~05	72	69	54	50	49	81.3	66.1	
05~06	73	71	55	49	48	81.6	67.0	
06~07	73	69	51	48	48	83.8	66.7	
07~08	75	73	54	48	48	81.9	68.7	
08~09	72	72	54	49	48	82.5	68.6	
09~10	74	73	64	51	49	81.0	70.0	
10~11	73	72	54	51	49	82.7	68.8	
11~12	74	74	62	51	49	81.1	69.7	
12~13	75	74	63	51	50	80.2	69.4	
13~14	76	73	61	53	51	80.6	69.8	
14~15	73	72	55	52	51	81.7	68.3	
15~16	75	75	64	53	52	80.9	69.8	
16~17	75	73	66	52	49	82.3	70.6	
17~18	73	71	62	54	54	81.6	69.5	
18~19	74	72	58	55	54	82.3	68.8	
19~20	71	71	65	52	51	81.2	68.4	
20~21	74	72	50	49	48	81.4	67.4	
21~22	73	72	52	50	49	81.3	67.6	
22~23	73	71	53	49	48	81.2	67.5	
23~24	73	71	53	48	48	82.1	66.7	

鹽寮海濱公園88年8月非假日振動逐時監測結果

單位:dB

監測日期: 88/8/16

皿(约口为),						1				
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註		
00~01	34	34	30	30	30	43.4	32.2			
01~02	35	31	30	30	30	45.4	32.0			
02~03	36	31	30	30	30	44.8	32.5			
03~04	36	31	30	30	30	46.7	32.3			
04~05	34	31	30	30	30	42.0	31.2			
05~06	38	34	30	30	30	48.5	33.9			
06~07	37	34	30	30	30	45.5	32.7			
07~08	36	33	30	30	30	45.0	32.4			
08~09	35	32	30	30	30	42.6	32.0			
09~10	37	34	30	30	30	44.9	32.8			
10~11	37	32	30	30	30	42.3	32.0			
11~12	36	33	30	30	30	41.3	32.1			
12~13	39	35	30	30	30	43.8	33.6			
13~14	39	35	30	30	30	43.7	33.1			
14~15	34	34	30	30	30	41.8	32.1			
15~16	36	34	30	30	30	43.1	32.6			
16~17	34	34	30	30	30	45.5	32.8			
17~18	38	35	30	30	30	47.2	34.1			
18~19	37	35	30	30	30	43.8	33.2			
19~20	35	35	30	30	30	43.0	32.4			
20~21	35	31	30	30	30	42.3	31.9			
21~22	37	33	30	30	30	44.9	33.2			
22~23	35	31	30	30	30	44.8	31.9			
23~24	34	33	30	30	30	43.5	31.5			

鹽寮海濱公園88年8月假日噪音逐時監測結果

監測日期: 88/8/15 單位:dB(A)

监侧口别:	00/0/13						<u> </u>	ID(/1)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	71	68	58	52	50	81.6	65.4	
01~02	72	69	55	49	48	79.9	65.4	
02~03	75	70	56	51	49	82.9	67.5	
03~04	72	71	56	50	49	80.7	66.2	
04~05	72	69	57	53	51	80.3	66.1	
05~06	74	71	56	50	49	83.3	67.4	
06~07	75	73	58	51	50	84.3	68.8	
07~08	74	72	55	51	50	82.5	68.0	
08~09	76	75	55	52	51	80.3	69.3	
09~10	75	74	67	51	50	82.5	70.5	
10~11	75	75	60	52	49	83.0	70.6	
11~12	76	73	67	53	52	81.2	70.2	
12~13	75	75	64	50	49	80.9	70.1	
13~14	76	74	66	50	49	81.5	70.9	
14~15	74	73	59	50	49	83.6	69.8	
15~16	73	72	58	51	50	82.7	69.2	
16~17	75	73	63	51	51	81.9	69.6	
17~18	72	72	59	51	50	81.0	68.6	
18~19	76	73	64	50	49	82.0	69.8	
19~20	73	72	60	53	52	83.3	69.7	
20~21	72	71	64	54	53	81.4	68.5	
21~22	73	70	61	51	50	81.6	68.4	
22~23	73	72	56	50	49	81.5	67.2	
23~24	72	71	54	50	49	82.4	67.7	

鹽寮海濱公園88年8月假日振動逐時監測結果

監測日期: 88/8/15 單位:dB

监侧口别,	1									
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註		
00~01	38	33	30	30	30	47.9	32.8			
01~02	35	32	30	30	30	47.8	32.4			
02~03	38	32	30	30	30	50.0	33.4			
03~04	36	31	30	30	30	46.2	32.5			
04~05	35	33	30	30	30	43.6	31.9			
05~06	36	33	30	30	30	43.5	32.1			
06~07	35	32	30	30	30	48.0	32.0			
07~08	37	32	30	30	30	46.1	32.8			
08~09	35	33	30	30	30	41.3	31.7			
09~10	37	33	30	30	30	47.4	33.8			
10~11	39	35	30	30	30	44.5	33.4			
11~12	36	33	30	30	30	42.8	32.1			
12~13	34	32	30	30	30	41.6	31.5			
13~14	33	33	30	30	30	47.6	33.2			
14~15	36	34	30	30	30	43.0	32.5			
15~16	37	34	30	30	30	45.3	33.3			
16~17	36	34	30	30	30	42.9	32.6			
17~18	35	33	30	30	30	44.2	32.9			
18~19	38	34	30	30	30	43.2	33.1			
19~20	37	34	30	30	30	43.3	33.0			
20~21	37	34	30	30	30	43.7	33.0			
21~22	37	33	30	30	30	45.9	33.6			
22~23	33	32	30	30	30	43.3	31.5			
23~24	36	32	30	30	30	48.2	32.9			

福隆街上88年8月非假日噪音逐時監測結果

監測日期: 88/8/16 單位: dB(A)

監測日期:	88/8/16						單位:c	lB(A)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	71	71	53	51	51	79.5	66.0	
01~02	74	72	52	51	51	79.4	66.6	
02~03	73	70	52	51	51	80.2	66.2	
03~04	73	68	52	52	51	78.6	65.2	
04~05	75	71	53	52	52	81.3	67.2	
05~06	73	72	53	52	52	80.4	67.4	
06~07	74	71	53	51	51	81.3	67.8	
07~08	75	73	52	51	50	81.5	68.4	
08~09	75	74	53	51	51	82.5	69.8	
09~10	75	74	62	53	52	78.8	69.4	
10~11	76	76	54	53	53	80.3	70.0	
11~12	76	76	63	53	52	79.8	70.8	
12~13	76	75	64	53	53	79.9	69.9	
13~14	76	75	59	53	53	79.1	70.0	
14~15	76	75	55	53	53	80.5	69.9	
15~16	75	74	62	53	53	80.3	69.8	
16~17	76	75	66	53	53	80.7	70.6	
17~18	75	74	62	53	53	86.6	71.1	
18~19	77	72	55	53	52	80.7	69.1	
19~20	72	72	63	51	51	80.3	68.7	
20~21	76	75	52	51	51	79.3	68.5	
21~22	74	72	52	51	51	79.7	68.1	
22~23	73	72	52	51	51	79.1	67.4	
23~24	73	71	52	51	51	80.0	66.7	

福隆街上88年8月非假日振動逐時監測結果

監測日期: 88/8/16 單位:dB

监侧口别:	00/0/10						714	· ub
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	38	31	30	30	30	54.8	35.8	
01~02	41	34	30	30	30	54.0	36.4	
02~03	42	34	30	30	30	61.2	40.8	
03~04	44	35	30	30	30	59.0	39.2	
04~05	38	32	30	30	30	644	44.5	
05~06	4	35	30	30	30	57.9	40.0	
06~07	42	33	30	30	30	53.3	35.7	
07~08	44	38	30	30	30	58.5	39.3	
08~09	45	40	30	30	30	55.0	39.4	
09~10	49	43	30	30	30	59.9	43.2	
10~11	48	43	30	30	30	58.2	41.2	
11~12	49	46	30	30	30	60.5	43.5	
12~13	55	44	30	30	30	60.6	43.7	
13~14	49	46	32	30	30	58.1	43.1	
14~15	46	44	31	30	30	56.0	39.7	
15~16	48	43	31	30	57	41.9	41.5	
16~17	48	45	33	30	30	59.0	43.5	
17~18	52	48	32	30	30	60.4	44.6	
18~19	48	43	31	30	30	57.3	41.9	
19~20	44	39	30	30	30	57.6	41.3	
20~21	44	38	30	30	30	55.6	39.6	
21~22	42	37	30	30	30	52.8	37.1	
22~23	46	37	30	30	30	57.4	39.9	
23~24	44	34	30	30	30	58.7	39.4	

福隆街上88年8月假日噪音逐時監測結果

監測日期: 88/8/15 單位: dB(A)

監測日期:	88/8/15						単位:c	lB(A)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	73	72	55	52	51	81.2	67.9	
01~02	71	70	53	51	51	81.9	66.1	
02~03	72	71	53	51	51	80.3	66.5	
03~04	72	70	53	52	51	81.7	65.7	
04~05	73	72	52	50	50	81.1	66.2	
05~06	73	71	53	51	51	81.9	66.8	
06~07	73	72	54	52	52	82.7	67.4	
07~08	74	73	54	52	52	83.2	68.4	
08~09	74	74	55	52	52	83.9	69.5	
09~10	75	74	56	55	55	82.2	70.9	
10~11	75	75	63	55	54	84.4	71.8	
11~12	74	72	64	55	55	86.0	70.3	
12~13	74	74	66	54	54	83.4	70.1	
13~14	76	75	65	55	54	79.9	69.6	
14~15	76	75	55	54	54	82.9	70.0	
15~16	77	75	57	55	54	81.1	70.3	
16~17	75	74	63	54	54	80.1	69.9	
17~18	73	72	57	54	54	79.9	68.0	
18~19	77	75	62	54	54	80.4	70.3	
19~20	76	75	59	55	54	82.0	70.0	
20~21	73	73	63	55	55	81.7	68.5	
21~22	75	73	61	54	54	81.6	68.3	
22~23	73	71	56	55	54	81.4	66.8	
23~24	71	70	54	51	51	79.9	65.9	

福隆街上88年8月假日振動逐時監測結果

監測日期: 88/8/15 單位: dB

监侧口别,	00,0,10						7-122	· ub
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	45	39	30	30	30	54.6	39.2	
01~02	41	35	30	30	30	58.0	38.7	
02~03	42	38	30	30	30	58.1	38.6	
03~04	42	36	30	30	30	57.6	37.7	
04~05	40	37	30	30	30	55.5	37.2	
05~06	45	39	30	30	30	58.4	39.7	
06~07	41	35	30	30	30	51.3	35.0	
07~08	46	43	30	30	30	60.7	41.2	
08~09	47	43	31	30	30	56.6	41.2	
09~10	51	47	32	30	30	60.2	45.3	
10~11	47	45	34	30	30	59.4	43.2	
11~12	47	43	30	30	30	58.6	42.2	
12~13	48	46	30	30	30	61.3	43.9	
13~14	47	45	34	30	30	61.3	44.6	
14~15	47	46	30	30	30	53.2	40.0	
15~16	48	43	33	30	30	56.2	41.3	
16~17	44	42	33	30	30	53.6	39.5	
17~18	46	42	32	30	30	57.6	40.6	
18~19	44	42	32	30	30	55.7	39.5	
19~20	40	35	30	30	30	60.6	42.4	
20~21	44	39	30	30	30	56.1	39.2	
21~22	42	39	30	30	30	60.7	43.1	
22~23	44	34	30	30	30	59.3	40.0	
23~24	43	33	30	30	30	58.2	39.4	

102縣道新社橋88年8月非假日噪音逐時監測結果

監測日期: 88/8/17 單位: dB(A)

監測日期:	88/8/17						單位:d	B(A)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01		59	43	41	41	72.3	55.4	
01~02	63	58	43	41	41	72.7	56.8	
02~03	60	52	42	41	41	74.7	55.2	
03~04	61	56	42	41	41	73.1	55.6	
04~05	61	55	42	41	41	73.4	56.1	
05~06	65	62	42	41	41	74.4	59.1	
06~07	66	60	42	41	41	72.8	58.0	
07~08	63	59	42	41	41	74.9	58.2	
08~09	67	64	43	41	41	77.7	60.0	
09~10	69	65	52	47	46	96.9	67.6	
10~11	68	63	50	42	40	96.5	62.8	
11~12	68	63	47	42	40	94.7	63.2	
12~13	68	62	47	42	41	93.1	64.0	
13~14	66	61	46	42	41	89.3	61.6	
14~15	68	63	47	42	42	96.2	63.9	
15~16	68	64	49	43	42	97.2	65.7	
16~17	71	66	50	44	43	96.9	68.2	
17~18	69	64	48	42	40	96.4	64.4	
18~19	67	63	44	42	42	78.6	60.5	
19~20	70	57	44	42	42	76.1	61.0	
20~21	59	56	40	39	39	74.0	57.3	
21~22	67	61	39	39	38	79.9	63.1	
22~23	67	61	40	39	39	82.4	64.0	
23~24	64	61	39	38	38	81.7	63.4	

102縣道之新社橋88年8月非假日振動逐時監測結果

監測日期: 88/8/17 單位: dB

监侧口别:	00,0,17						714	· ub
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	34	30	30	30	30	45.1	31.2	
01~02	33	30	30	30	30	46.3	31.8	
02~03	32	30	30	30	30	42.6	30.9	
03~04	31	30	30	30	30	42.5	30.7	
04~05	30	30	30	30	30	42.9	30.9	
05~06	34	30	30	30	30	42.5	31.1	
06~07	33	30	30	30	30	44.1	31.1	
07~08	36	31	30	30	30	43.5	31.9	
08~09	36	32	30	30	30	44.7	32.2	
09~10	36	33	30	30	30	52.2	34.2	
10~11	32	30	30	30	30	48.3	31.0	
11~12	31	30	30	30	30	53.4	31.1	
12~13	32	30	30	30	30	56.2	32.7	
13~14	32	30	30	30	30	48.5	31.0	
14~15	32	30	30	30	30	55.7	32.4	
15~16	33	30	30	30	30	57.0	34.0	
16~17	34	30	30	30	30	56.4	33.9	
17~18	34	30	30	30	30	56.5	33.1	
18~19	35	32	30	30	30	46.1	31.9	
19~20	34	32	30	30	30	44.5	31.4	
20~21	31	31	30	30	30	43.7	31.1	
21~22	35	30	30	30	30	47.6	32.0	
22~23	34	30	30	30	30	45.3	31.5	
23~24	34	30	30	30	30	44.4	31.7	

102 縣道之新社橋88年8月假日噪音逐時監測結果

監測日期: 88/8/14 單位:dB(A)

皿(切口対)・							→ □	D(11)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	60	51	41	40	40	87.4	59.7	
01~02	60	59	41	40	40	68.3	53.3	
02~03	60	58	41	40	40	87.7	59.7	
03~04	60	58	41	40	40	89.9	60.7	
04~05	62	59	41	40	40	87.9	60.0	
05~06	63	62	41	40	40	70.1	54.8	
06~07	63	61	42	41	40	65.8	53.7	
07~08	63	62	41	40	40	88.4	61.1	
08~09	63	62	41	40	40	89.5	61.8	
09~10	60	59	41	40	40	89.4	61.3	
10~11	63	61	41	40	40	70.6	54.6	
11~12	62	60	41	40	40	89.4	61.0	
12~13	62	61	40	40	39	86.9	59.5	
13~14	63	61	40	40	40	88.1	62.3	
14~15	62	60	43	40	40	89.4	61.6	
15~16	61	59	43	40	40	87.2	59.8	
16~17	62	61	42	40	40	88.8	60.6	
17~18	61	60	42	41	41	89.1	63.1	
18~19	63	61	44	43	43	71.2	56.3	
19~20	66	59	44	43	43	70.8	56.5	
20~21	68	60	44	43	43	73.5	58.7	
21~22	64	59	45	43	43	73.1	57.3	
22~23	62	59	45	44	44	74.7	57.1	
23~24	61	59	45	44	44	73.2	55.6	

102 縣道之新社橋88年8月假日振動逐時監測結果

監測日期: 88/8/14 單位: dB

监侧口别:	00,0,1.						714	· ub
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	40.7	30.6	
01~02	31	30	30	30	30	40.5	30.4	
02~03	30	30	30	30	30	41.1	30.5	
03~04	32	30	30	30	30	40.3	30.6	
04~05	33	30	30	30	30	40.7	30.7	
05~06	33	30	30	30	30	41.3	30.8	
06~07	34	31	30	30	30	40.7	31.0	
07~08	31	30	30	30	30	38.3	30.5	
08~09	33	30	30	30	30	45.3	31.4	
09~10	33	30	30	30	30	44.3	31.4	
10~11	32	30	30	30	30	38.0	30.3	
11~12	32	30	30	30	30	42.7	30.8	
12~13	33	30	30	30	30	37.9	30.5	
13~14	33	30	30	30	30	40.4	30.6	
14~15	33	30	30	30	30	42.5	31.0	
15~16	32	30	30	30	30	43.1	31.4	
16~17	36	31	30	30	30	42.4	31.5	
17~18	33	30	30	30	30	40.4	30.7	
18~19	35	31	30	30	30	42.4	31.1	
19~20	35	30	30	30	30	43.9	31.4	
20~21	38	34	30	30	30	41.4	32.0	
21~22	33	30	30	30	30	41.1	30.7	
22~23	32	30	30	30	30	38.4	30.5	
23~24	33	30	30	30	30	42.7	31.1	

過港部落88年8月非假日噪音逐時監測結果

監測日期: 88/8/17 單位: dB(A)

監測日期:	88/8/17						單位:c	lB(A)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	52	45	40	39	39	65.6	49.7	
01~02	51	49	40	40	39	66.5	49.1	
02~03	49	44	40	38	38	66.2	50.2	
03~04	52	45	39	38	37	66.9	48.6	
04~05	46	44	38	37	37	61.5	45.1	
05~06	44	42	39	38	37	66.8	48.7	
06~07	50	47	39	38	37	63.5	46.6	
07~08	46	45	40	39	39	65.8	50.3	
08~09	56	44	40	40	39	68.2	53.3	
09~10	52	51	45	41	41	67.8	48.0	
10~11	52	50	44	41	40	70.1	47.0	
11~12	56	50	44	41	40	69.3	48.6	
12~13	53	48	43	40	39	71.4	46.6	
13~14	47	46	42	40	40	65.9	44.0	
14~15	66	57	44	41	40	76.7	57.5	
15~16	51	49	43	40	39	74.0	47.5	
16~17	51	49	45	41	40	70.6	47.0	
17~18	50	47	40	39	39	69.4	49.3	
18~19	53	46	41	40	39	67.7	49.4	
19~20	46	44	41	40	40	65.1	46.4	
20~21	46	43	41	40	40	64.5	44.8	
21~22	47	45	40	40	39	62.7	44.6	
22~23	55	47	41	39	39	66.2	48.2	
23~24	52	45	40	39	39	68.1	47.6	

過港部落88年8月非假日振動逐時監測結果

監測日期: 88/8/17 單位: dB

監測日期:	00/0/1/						- 中世	· aB
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	37.6	30.2	
01~02	30	30	30	30	30	36.8	30.2	
02~03	30	30	30	30	30	33.6	30.0	
03~04	30	30	30	30	30	35.9	30.1	
04~05	30	30	30	30	30	36.1	30.1	
05~06	30	30	30	30	30	37.0	30.2	
06~07	30	30	30	30	30	38.8	30.3	
07~08	30	30	30	30	30	38.3	30.3	
08~09	30	30	30	30	30	36.2	30.1	
09~10	38	37	32	30	30	62.1	37.3	
10~11	36	35	30	30	30	41.0	32.2	
11~12	37	36	31	30	30	57.3	33.6	
12~13	30	30	30	30	30	76.5	45.2	
13~14	38	36	30	30	30	52.6	33.3	
14~15	37	36	32	30	30	52.8	33.8	
15~16	37	36	31	30	30	42.9	32.6	
16~17	37	36	32	30	30	44.3	33.4	
17~18	39	37	30	30	30	50.0	34.0	
18~19	32	30	30	30	30	38.8	30.5	
19~20	31	30	30	30	30	39.2	30.5	
20~21	34	30	30	30	30	44.1	31.6	
21~22	32	30	30	30	30	39.5	30.5	
22~23	32	30	30	30	30	39.7	30.5	
23~24	33	30	30	30	30	39.1	30.6	

過港部落88年8月假日噪音逐時監測結果

監測日期:88/8/14 單位:dB(A)

監側口朔 . 00/0/14 単位 · UD(A)								נט(ה)
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	57	50	40	39	39	70.1	52.6	
01~02	56	53	40	39	39	64.0	49.5	
02~03	56	52	40	39	39	63.1	48.9	
03~04	50	47	40	39	39	62.0	46.0	
04~05	56	46	40	39	38	64.3	47.5	
05~06	53	52	40	39	39	71.1	51.9	
06~07	56	49	40	39	39	63.1	48.0	
07~08	54	47	40	39	38	65.9	51.2	
08~09	58	55	40	39	39	68.1	52.8	
09~10	60	55	40	39	38	69.1	54.2	
10~11	63	60	40	39	39	67.6	54.2	
11~12	65	63	40	39	39	71.1	57.6	
12~13	64	61	40	39	39	75.0	59.6	
13~14	65	62	40	39	39	72.7	58.2	
14~15	66	65	40	38	38	71.3	59.0	
15~16	69	59	43	39	39	75.6	59.4	
16~17	65	64	41	39	39	71.2	57.5	
17~18	66	61	40	39	39	73.7	58.2	
18~19	65	63	40	39	39	74.9	58.0	
19~20	45	44	40	39	39	65.7	49.7	
20~21	57	47	39	39	38	66.6	51.6	
21~22	47	45	39	39	38	65.5	49.4	
22~23	51	44	40	39	39	66.4	50.6	
23~24	48	46	41	40	40	68.4	52.7	

過港部落88年8月假日振動逐時監測結果

監測日期: 88/8/14 單位:dB

皿阅口别. 00/0/1 1							· ub	
時間L値	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	37.7	30.2	
01~02	30	30	30	30	30	33.9	30.0	
02~03	30	30	30	30	30	36.3	30.1	
03~04	30	30	30	30	30	34.5	30.0	
04~05	30	30	30	30	30	37.4	30.2	
05~06	30	30	30	30	30	38.8	30.3	
06~07	30	30	30	30	30	40.6	30.5	
07~08	30	30	30	30	30	39.0	30.3	
08~09	30	30	30	30	30	37.0	30.2	
09~10	30	30	30	30	30	42.0	30.8	
10~11	30	30	30	30	30	40.4	30.5	
11~12	30	30	30	30	30	41.6	30.7	
12~13	31	30	30	30	30	42.0	30.8	
13~14	30	30	30	30	30	42.0	30.8	
14~15	30	30	30	30	30	39.4	30.4	
15~16	30	30	30	30	30	41.4	30.7	
16~17	30	30	30	30	30	40.1	30.5	
17~18	30	30	30	30	30	37.6	30.3	
18~19	30	30	30	30	30	36.4	30.2	
19~20	30	30	30	30	30	33.1	30.0	
20~21	30	30	30	30	30	30.8	30.0	
21~22	30	30	30	30	30	34.4	30.0	
22~23	30	30	30	30	30	33.8	30.0	
23~24	30	30	30	30	30	38.2	30.3	

台2省道與102甲縣道交叉口88年9月非假日噪音逐時監測結果

監測日期: 88/09/12 單位:dB(A)

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	80	74	60	60	53	91.9	72.7	
01~02	77	72	59	54	54	98.8	78.1	
02~03	76	71	55	53	52	91.9	71.0	
03~04	77	74	55	52	52	98.9	77.9	
04~05	74	70	55	52	51	97.2	73.5	
05~06	78	72	55	52	52	97.3	75.2	
06~07	77	73	56	54	52	90.3	70.7	
07~08	77	75	60	55	54	94.3	74.9	
08~09	79	73	58	55	52	94.0	74.3	
09~10	79	75	60	54	52	92.3	72.8	
10~11	77	73	60	52	52	92.2	72.0	
11~12	74	74	61	55	53	93.9	73.4	
12~13	79	75	61	59	55	90.3	72.0	
13~14	79	74	61	58	54	92.7	73.8	
14~15	79	76	62	61	55	94.6	74.4	
15~16	79	78	62	59	56	91.4	73.3	
16~17	79	76	61	58	58	96.3	75.8	
17~18	79	76	64	62	56	95.3	75.5	
18~19	79	76	62	60	57	94.3	75.2	
19~20	79	76	60	58	56	91.7	73.3	
20~21	76	76	61	57	54	89.6	71.5	
21~22	76	72	59	55	54	92.9	72.1	
22~23	76	73	58	56	56	93.4	72.1	
23~24	75	72	57	55	52	96.7	75.8	

台2省道與102甲縣道交叉口88年9月非假日振動逐時監測結果

監測日期: 88/09/12

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	44	40	30	30	30	51.2	38.3	
01~02	38	37	30	30	30	50.7	36.8	
02~03	38	35	30	30	30	48.0	35.4	
03~04	39	35	30	30	30	45.9	33.6	
04~05	35	33	30	30	30	44.7	32.8	
05~06	38	34	30	30	30	44.7	32.6	
06~07	41	36	30	30	30	47.4	34.3	
07~08	43	42	30	30	30	47.2	37.0	
08~09	43	42	30	30	30	47.6	37.0	
09~10	44	44	30	30	30	47.7	37.8	
10~11	44	44	30	30	30	46.8	37.5	
11~12	44	44	30	30	30	48.2	37.2	
12~13	44	41	30	30	30	47.4	36.6	
13~14	40	39	30	30	30	48.0	35.6	
14~15	43	40	30	30	30	48.4	36.9	
15~16	45	43	30	30	30	48.4	37.3	
16~17	41	39	30	30	30	47.6	35.7	
17~18	42	37	30	30	30	49.3	35.9	
18~19	40	38	30	30	30	47.7	35.4	
19~20	42	38	30	30	30	47.8	35.8	
20~21	40	38	30	30	30	47.1	35.4	
21~22	40	36	30	30	30	48.7	35.4	
22~23	41	36	30	30	30	48.8	35.2	
23~24	38	34	30	30	30	47.8	34.7	

台2省道與102甲縣道交叉口88年9月假日噪音逐時監測結果

監測日期: 88/09/13 單位:dB(A)

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	79	73	56	55	55	87.2	70.8	
01~02	77	67	57	54	54	88.2	70.0	
02~03	77	75	56	55	55	92.7	72.7	
03~04	74	71	55	54	52	90.8	71.4	
04~05	76	71	54	53	53	92.2	71.9	
05~06	78	68	55	53	53	92.7	73.1	
06~07	78	75	58	53	53	90.9	72.7	
07~08	76	71	60	56	53	92.1	73.5	
08~09	77	71	61	57	53	91.9	71.4	
09~10	79	73	65	61	54	94.6	75.2	
10~11	78	73	66	60	59	92.6	73.6	
11~12	77	74	63	61	56	93.4	73.6	
12~13	78	75	65	63	55	94.3	74.6	
13~14	79	74	64	63	55	96.7	76.1	
14~15	79	73	63	60	55	97.1	75.9	
15~16	78	74	66	63	56	94.3	74.7	
16~17	81	74	64	63	58	95.4	74.7	
17~18	79	74	65	62	56	95.1	75.1	
18~19	78	73	65	62	59	92.3	73.4	
19~20	79	73	66	61	58	94.0	75.3	
20~21	77	70	60	59	55	92.5	72.2	
21~22	74	71	57	54	54	93.2	72.1	
22~23	76	70	57	56	55	91.6	72.8	
23~24	77	72	56	55	54	90.2	70.3	

台2省道與102甲縣道交叉口88年9月假日振動逐時監測結果

監測日期: 88/09/13

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	37	34	30	30	30	47.2	33.8	
01~02	34	32	30	30	30	44.6	32.5	
02~03	34	33	30	30	30	47.8	33.5	
03~04	33	33	30	30	30	46.8	32.8	
04~05	31	30	30	30	30	45.5	32.0	
05~06	36	33	30	30	30	47.0	33.4	
06~07	38	35	30	30	30	47.8	34.5	
07~08	42	41	30	30	30	47.8	36.3	
08~09	40	35	30	30	30	47.6	34.7	
09~10	39	38	30	30	30	47.5	35.1	
10~11	38	34	30	30	30	47.3	33.8	
11~12	42	39	30	30	30	46.9	35.7	
12~13	43	40	30	30	30	47.9	36.5	
13~14	43	40	30	30	30	47.8	36.1	
14~15	40	37	30	30	30	46.2	35.0	
15~16	41	38	30	30	30	47.3	36.0	
16~17	40	40	30	30	30	45.6	34.8	
17~18	42	39	30	30	30	46.6	35.7	
18~19	42	42	30	30	30	45.8	36.0	
19~20	40	39	30	30	30	46.6	36.0	
20~21	38	34	30	30	30	47.3	34.4	
21~22	36	33	30	30	30	48.1	34.0	
22~23	35	33	30	30	30	45.2	32.5	
23~24	35	33	30	30	30	48.5	34.0	

鹽寮海濱公園88年9月非假日噪音逐時監測結果

監測日期:88/09/12

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	71	68	53	45	44	75.6	64.2	
01~02	73	72	49	45	44	77.2	67.5	
02~03	74	73	61	45	44	81.2	68.7	
03~04	72	71	56	53	52	85.2	67.8	
04~05	68	67	55	53	52	75.6	63.3	
05~06	69	67	55	53	52	74.6	62.9	
06~07	69	68	56	53	53	74.2	63.2	
07~08	71	69	55	53	52	73.9	63.9	
08~09	71	67	57	53	53	72.4	63.6	
09~10	70	69	58	53	53	76.2	65.4	
10~11	73	73	61	53	53	74.9	67.1	
11~12	69	68	60	55	54	74.6	64.6	
12~13	70	69	56	54	53	72.6	63.9	
13~14	72	70	57	54	53	75.6	65.2	
14~15	73	73	59	54	54	75.6	67.8	
15~16	71	71	61	54	54	75.5	66.1	
16~17	73	72	58	54	53	75.5	66.7	
17~18	75	73	61	57	55	79.7	68.2	
18~19	71	70	61	55	54	93.5	73.1	
19~20	72	70	57	55	54	93.7	71.4	
20~21	64	62	55	48	46	93.0	67.8	
21~22	71	68	56	48	47	93.3	68.8	
22~23	71	70	54	50	49	93.1	71.1	
23~24	73	70	54	49	49	81.0	66.1	

鹽寮海濱公園88年9月非假日振動逐時監測結果

監測日期:88/09/12

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	31	30	30	30	30	45.1	31.8	
01~02	33	30	30	30	30	43.1	31.4	
02~03	34	31	30	30	30	46.1	32.2	
03~04	33	31	30	30	30	42.6	31.4	
04~05	35	32	30	30	30	44.9	31.8	
05~06	36	32	30	30	30	47.2	32.7	
06~07	36	33	30	30	30	42.4	31.6	
07~08	35	34	30	30	30	47.7	32.9	
08~09	37	33	30	30	30	49.6	33.9	
09~10	36	32	30	30	30	50.6	34.4	
10~11	36	33	30	30	30	51.1	34.9	
11~12	30	30	30	30	30	42.9	31.1	
12~13	35	33	30	30	30	47.4	32.6	
13~14	36	32	30	30	30	49.6	33.7	
14~15	36	32	30	30	30	50.2	34.5	
15~16	36	33	30	30	30	44.8	32.4	
16~17	34	32	30	30	30	43.2	31.6	
17~18	36	34	30	30	30	47.0	32.9	
18~19	33	33	30	30	30	44.3	32.0	
19~20	38	33	30	30	30	52.0	35.5	
20~21	34	32	30	30	30	43.2	31.7	
21~22	37	33	30	30	30	45.6	32.7	
22~23	35	34	30	30	30	48.5	34.0	
23~24	34	33	30	30	30	46.9	32.8	

鹽寮海濱公園88年9月假日噪音逐時監測結果

監測日期: 88/09/13 單位: dB(A)

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	69	64	54	49	48	80.1	64.5	
01~02	68	63	54	50	49	77.7	63.5	
02~03	64	62	53	49	49	77.4	62.5	
03~04	62	60	53	49	48	76.9	59.7	
04~05	66	64	53	48	47	79.3	62.1	
05~06	64	63	54	50	49	93.4	71.2	
06~07	67	64	54	49	46	82.7	66.6	
07~08	69	67	54	51	50	83.0	66.5	
08~09	68	66	56	51	47	81.6	65.0	
09~10	67	66	55	47	47	81.9	65.5	
10~11	67	66	58	52	48	81.5	66.0	
11~12	74	72	62	55	54	93.2	70.9	
12~13	72	66	58	53	51	80.0	66.0	
13~14	66	66	55	51	50	94.0	71.1	
14~15	68	68	58	51	49	80.9	65.0	
15~16	69	68	61	54	54	78.6	64.9	
16~17	70	66	55	52	50	78.6	64.0	
17~18	69	67	59	50	49	82.3	67.4	
18~19	69	69	53	49	49	84.1	67.6	
19~20	67	66	57	49	49	82.9	65.8	
20~21	70	68	54	49	48	77.6	64.3	
21~22	72	69	54	48	48	81.2	66.3	
22~23	68	68	54	49	48	82.1	66.4	
23~24	67	65	53	51	50	85.7	67.4	

鹽寮海濱公園88年9月假日振動逐時監測結果

監測日期:88/09/13

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	34	33	30	30	30	42.5	31.8	
01~02	35	31	30	30	30	50.8	34.5	
02~03	37	34	30	30	30	43.7	32.4	
03~04	37	32	30	30	30	47.7	33.3	
04~05	36	32	30	30	30	47.4	32.9	
05~06	35	32	30	30	30	44.8	32.4	
06~07	33	30	30	30	30	44.6	31.8	
07~08	37	34	30	30	30	48.9	34.4	
08~09	34	30	30	30	30	50.6	34.3	
09~10	35	33	30	30	30	48.1	33.5	
10~11	33	30	30	30	30	49.0	33.5	
11~12	38	33	30	30	30	46.6	33.4	
12~13	37	36	30	30	30	48.8	33.9	
13~14	34	32	30	30	30	44.2	31.8	
14~15	34	32	30	30	30	43.2	31.7	
15~16	35	34	30	30	30	47.3	33.3	
16~17	39	33	30	30	30	47.2	33.8	
17~18	34	30	30	30	30	47.9	32.9	
18~19	36	34	30	30	30	43.0	32.3	
19~20	38	33	30	30	30	47.7	33.8	
20~21	34	33	30	30	30	46.5	32.5	
21~22	33	31	30	30	30	46.4	32.4	
22~23	30	30	30	30	30	44.1	31.4	
23~24	38	35	30	30	30	48.8	34.7	

福隆街上88年9月非假日噪音逐時監測結果

監測日期:88/09/12

單位:dB(A)

	30/09/12						单型·0.	D(11)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	72	70	59	55	54	81.7	66.9	
01~02	77	75	59	55	53	83.0	70.2	
02~03	76	73	63	56	55	84.1	70.3	
03~04	75	75	58	54	53	82.5	70.0	
04~05	76	74	58	54	53	81.8	69.0	
05~06	74	73	58	55	53	79.3	68.0	
06~07	76	73	58	54	53	79.9	68.7	
07~08	75	74	59	52	51	79.8	69.2	
08~09	75	74	62	54	54	79.9	69.8	
09~10	76	75	63	55	54	83.2	71.3	
10~11	78	77	66	55	55	79.7	72.2	
11~12	74	74	65	57	56	79.1	70.0	
12~13	76	75	58	54	53	79.4	69.5	
13~14	76	75	60	54	54	82.1	71.6	
14~15	79	78	64	54	54	82.6	73.5	
15~16	76	76	69	57	56	81.5	71.8	
16~17	79	79	62	53	52	81.4	72.4	
17~18	80	79	67	61	58	86.2	74.5	
18~19	76	75	66	59	57	89.9	73.0	
19~20	80	75	60	56	55	89.3	72.4	
20~21	74	73	60	55	53	84.8	69.4	
21~22	74	71	60	53	50	89.1	69.1	
22~23	75	73	55	52	52	88.6	70.7	
23~24	74	73	56	52	52	83.2	67.6	

福隆街上88年9月非假日振動逐時監測結果

監測日期:88/09/12

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	45	39	30	30	30	58.4	40.7	
01~02	48	42	31	30	30	57.1	41.4	
02~03	41	39	30	30	30	54.7	37.9	
03~04	44	39	30	30	30	53.0	38.0	
04~05	45	40	30	30	30	59.4	41.9	
05~06	47	41	30	30	30	58.1	41.7	
06~07	44	41	31	30	30	61.5	43.6	
07~08	43	37	30	30	30	58.3	40.8	
08~09	47	43	32	30	30	58.9	42.5	
09~10	46	42	31	30	30	55.0	40.8	
10~11	50	45	30	30	30	57.9	42.7	
11~12	48	43	30	30	30	56.0	41.2	
12~13	46	41	30	30	30	59.7	43.0	
13~14	47	43	30	30	30	57.8	41.8	
14~15	45	40	30	30	30	58.8	41.9	
15~16	46	43	31	30	57	54.1	39.2	
16~17	45	40	30	30	30	58.4	51.2	
17~18	34	34	30	30	30	35.4	31.3	
18~19	47	42	32	30	30	59.9	42.2	
19~20	48	43	32	30	30	61.6	45.8	
20~21	44	42	31	30	30	57.1	40.8	
21~22	43	41	32	30	30	53.7	38.0	
22~23	43	39	31	30	30	52.0	37.7	
23~24	41	39	30	30	30	49.9	36.3	

福隆街上88年9月假日噪音逐時監測結果

監測日期:88/09/13

單位:dB(A)

监测口期:	00/07/13	1	1	1	1		单位.α	D(A)
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	74	74	59	53	52	87.3	70.8	
01~02	74	73	58	52	51	92.2	70.0	
02~03	75	74	57	53	51	86.9	69.1	
03~04	73	72	56	52	52	82.0	66.7	
04~05	73	71	56	53	51	83.7	66.6	
05~06	74	73	58	53	52	88.0	69.2	
06~07	75	74	58	53	51	81.7	67.9	
07~08	77	75	64	53	52	89.6	72.8	
08~09	79	78	60	56	53	88.1	73.4	
09~10	79	78	63	56	56	88.2	72.6	
10~11	78	77	63	56	53	90.5	74.4	
11~12	82	78	67	57	56	89.1	74.6	
12~13	77	77	68	56	56	92.4	74.6	
13~14	81	77	59	56	55	85.9	72.6	
14~15	78	77	63	57	55	92.3	76.1	
15~16	79	79	67	58	57	89.7	75.0	
16~17	78	76	65	49	49	87.6	73.6	
17~18	78	76	64	52	51	90.8	74.5	
18~19	79	77	58	52	51	88.1	73.1	
19~20	76	76	55	51	50	89.1	72.9	
20~21	77	73	59	53	51	82.3	70.0	
21~22	79	79	57	53	52	84.6	72.7	
22~23	77	77	55	52	52	80.6	70.8	
23~24	77	75	61	55	51	82.6	70.0	

福隆街上88年9月假日振動逐時監測結果

監測日期:88/09/13

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	42	39	31	30	30	58.9	40.8	
01~02	42	38	31	30	30	50.5	35.7	
02~03	45	41	32	30	30	56.3	40.3	
03~04	44	39	30	30	30	57.2	40.2	
04~05	41	40	30	30	30	53.7	37.7	
05~06	40	35	30	30	30	53.5	36.7	
06~07	37	34	30	30	30	47.8	33.8	
07~08	44	39	31	30	30	52.4	37.1	
08~09	46	44	31	30	30	59.4	42.2	
09~10	48	45	30	30	30	57.0	42.4	
10~11	45	42	31	30	30	58.0	41.5	
11~12	47	43	32	30	30	54.3	40.8	
12~13	49	46	31	30	30	56.4	42.6	
13~14	50	45	31	30	30	58.9	42.7	
14~15	50	44	30	30	30	56.5	40.6	
15~16	49	48	31	30	30	58.0	43.0	
16~17	50	48	32	30	30	62.8	45.8	
17~18	49	43	30	30	30	61.1	43.8	
18~19	48	44	31	30	30	52.5	40.2	
19~20	45	44	30	30	30	50.3	38.3	
20~21	49	44	30	30	30	55.2	40.6	
21~22	46	40	30	30	30	51.5	38.6	
22~23	41	36	30	30	30	53.6	37.3	
23~24	41	34	30	30	30	51.7	37.5	

102縣道新社橋88年9月非假日噪音逐時監測結果

監測日期: 88/09/10 單位: dB(A)

							+12.u	- ()
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	62	53	40	38	38	75.0	58.4	
01~02	61	57	40	39	38	77.7	60.2	
02~03	62	57	41	38	38	77.3	60.8	
03~04	62	59	41	39	38	76.5	59.0	
04~05	62	59	41	39	38	75.3	58.9	
05~06	63	62	40	39	38	76.7	60.9	
06~07	65	63	40	39	38	75.8	60.6	
07~08	68	63	45	39	38	77.0	61.8	
08~09	66	64	41	39	38	79.4	62.3	
09~10	67	66	43	39	39	76.6	61.1	
10~11	67	65	44	39	39	77.0	61.6	
11~12	65	64	49	39	38	92.9	66.6	
12~13	68	67	45	38	38	77.7	63.2	
13~14	68	67	44	41	41	79.6	63.6	
14~15	69	68	46	41	41	78.5	63.8	
15~16	68	67	43	41	41	78.5	63.9	
16~17	68	67	45	41	41	77.6	63.6	
17~18	67	66	49	42	41	76.0	62.5	
18~19	68	68	44	41	39	77.6	62.5	
19~20	64	63	46	38	38	75.0	59.9	
20~21	65	64	45	39	38	76.3	60.4	
21~22	61	57	43	38	38	78.0	61.3	
22~23	60	57	42	39	38	77.4	58.9	
23~24	62	59	41	38	38	76.4	58.0	
1								

102縣道之新社橋88年9月非假日振動逐時監測結果

監測日期:88/09/10

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	31	30	30	30	30	45.5	31.8	
01~02	31	30	30	30	30	46.4	32.3	
02~03	32	30	30	30	30	47.0	32.5	
03~04	33	30	30	30	30	44.8	31.9	
04~05	32	30	30	30	30	46.2	32.2	
05~06	37	32	30	30	30	49.9	34.8	
06~07	35	33	30	30	30	47.5	32.9	
07~08	34	32	30	30	30	47.1	32.7	
08~09	34	31	30	30	30	48.6	33.5	
09~10	36	34	30	30	30	47.3	34.1	
10~11	34	31	30	30	30	46.8	32.6	
11~12	35	31	30	30	30	46.1	32.6	
12~13	37	33	30	30	30	50.0	35.1	
13~14	39	36	30	30	30	48.4	34.4	
14~15	38	33	30	30	30	48.2	34.4	
15~16	33	30	30	30	30	47.8	32.9	
16~17	37	35	30	30	30	48.2	34.2	
17~18	35	32	30	30	30	50.2	34.6	
18~19	38	31	30	30	30	47.8	33.9	
19~20	33	32	30	30	30	48.3	33.3	
20~21	33	32	30	30	30	47.1	32.7	
21~22	36	32	30	30	30	46.9	33.2	
22~23	35	33	30	30	30	45.4	32.6	
23~24	33	32	30	30	30	46.7	32.5	

102 縣道之新社橋88年9月假日噪音逐時監測結果

監測日期: 88/09/11 單位: dB(A)

時間に値									
01~02 60 60 41 38 37 76.8 58.9 02~03 60 54 42 39 39 78.6 59.5 03~04 63 58 41 39 38 77.6 59.3 04~05 61 56 42 40 40 79.2 61.1 05~06 62 58 41 39 38 78.9 60.0 06~07 61 58 41 39 38 77.5 59.5 07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 <th>時間L值</th> <th>L5</th> <th>L10</th> <th>L50</th> <th>L90</th> <th>L95</th> <th>Lmax</th> <th>Leq</th> <th>備註</th>	時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
02~03 60 54 42 39 39 78.6 59.5 03~04 63 58 41 39 38 77.6 59.3 04~05 61 56 42 40 40 79.2 61.1 05~06 62 58 41 39 38 78.9 60.0 06~07 61 58 41 39 38 77.5 59.5 07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 11~12 68 67 49 43 42 79.7 64.2 11~12 68 67 49 42 41 79.4 63.2 13~14 68 67 50 42 42 77.4 62.6 <td>00~01</td> <td>62</td> <td>59</td> <td>41</td> <td>38</td> <td>38</td> <td>75.5</td> <td>58.5</td> <td></td>	00~01	62	59	41	38	38	75.5	58.5	
03~04 63 58 41 39 38 77.6 59.3 04~05 61 56 42 40 40 79.2 61.1 05~06 62 58 41 39 38 78.9 60.0 06~07 61 58 41 39 38 77.5 59.5 07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 <td>01~02</td> <td>60</td> <td>60</td> <td>41</td> <td>38</td> <td>37</td> <td>76.8</td> <td>58.9</td> <td></td>	01~02	60	60	41	38	37	76.8	58.9	
04~05 61 56 42 40 40 79.2 61.1 05~06 62 58 41 39 38 78.9 60.0 06~07 61 58 41 39 38 77.5 59.5 07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 <td>02~03</td> <td>60</td> <td>54</td> <td>42</td> <td>39</td> <td>39</td> <td>78.6</td> <td>59.5</td> <td></td>	02~03	60	54	42	39	39	78.6	59.5	
05~06 62 58 41 39 38 78.9 60.0 06~07 61 58 41 39 38 77.5 59.5 07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 <td>03~04</td> <td>63</td> <td>58</td> <td>41</td> <td>39</td> <td>38</td> <td>77.6</td> <td>59.3</td> <td></td>	03~04	63	58	41	39	38	77.6	59.3	
06~07 61 58 41 39 38 77.5 59.5 07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 <td>04~05</td> <td>61</td> <td>56</td> <td>42</td> <td>40</td> <td>40</td> <td>79.2</td> <td>61.1</td> <td></td>	04~05	61	56	42	40	40	79.2	61.1	
07~08 64 63 44 42 42 78.8 62.4 08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 <td>05~06</td> <td>62</td> <td>58</td> <td>41</td> <td>39</td> <td>38</td> <td>78.9</td> <td>60.0</td> <td></td>	05~06	62	58	41	39	38	78.9	60.0	
08~09 63 60 48 42 42 77.7 60.9 09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40	06~07	61	58	41	39	38	77.5	59.5	
09~10 67 65 51 43 43 80.6 64.0 10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 <td>07~08</td> <td>64</td> <td>63</td> <td>44</td> <td>42</td> <td>42</td> <td>78.8</td> <td>62.4</td> <td></td>	07~08	64	63	44	42	42	78.8	62.4	
10~11 69 69 48 42 42 79.7 64.2 11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	08~09	63	60	48	42	42	77.7	60.9	
11~12 68 67 49 43 42 79.7 63.4 12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	09~10	67	65	51	43	43	80.6	64.0	
12~13 68 67 49 42 41 79.4 63.2 13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	10~11	69	69	48	42	42	79.7	64.2	
13~14 68 66 46 42 42 79.3 62.9 14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	11~12	68	67	49	43	42	79.7	63.4	
14~15 68 67 50 42 42 77.4 62.6 15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	12~13	68	67	49	42	41	79.4	63.2	
15~16 67 66 53 43 41 76.7 62.8 16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	13~14	68	66	46	42	42	79.3	62.9	
16~17 69 66 51 42 41 77.1 63.0 17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	14~15	68	67	50	42	42	77.4	62.6	
17~18 68 67 50 42 42 78.5 63.4 18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	15~16	67	66	53	43	41	76.7	62.8	
18~19 65 64 47 41 40 78.6 60.8 19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	16~17	69	66	51	42	41	77.1	63.0	
19~20 66 60 42 40 39 79.4 61.5 20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	17~18	68	67	50	42	42	78.5	63.4	
20~21 65 62 42 43 43 73.5 58.7 21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	18~19	65	64	47	41	40	78.6	60.8	
21~22 64 58 41 40 39 79.6 62.5 22~23 63 58 41 40 39 78.1 61.6	19~20	66	60	42	40	39	79.4	61.5	
22~23 63 58 41 40 39 78.1 61.6	20~21	65	62	42	43	43	73.5	58.7	
	21~22	64	58	41	40	39	79.6	62.5	
23~24 61 57 42 39 39 78.0 60.8	22~23	63	58	41	40	39	78.1	61.6	
	23~24	61	57	42	39	39	78.0	60.8	

102 縣道之新社橋88年9月假日振動逐時監測結果

監測日期:88/09/11

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	36	33	30	30	30	49.1	33.9	
01~02	34	31	30	30	30	44.7	31.9	
02~03	32	32	30	30	30	45.7	32.2	
03~04	34	33	30	30	30	48.9	33.6	
04~05	32	30	30	30	30	47.1	32.5	
05~06	30	30	30	30	30	48.1	33.0	
06~07	31	30	30	30	30	47.5	32.6	
07~08	36	36	30	30	30	49.8	34.8	
08~09	39	37	30	30	30	50.4	35.5	
09~10	35	32	30	30	30	48.7	34.0	
10~11	37	35	30	30	30	49.0	34.6	
11~12	34	32	30	30	30	48.6	33.4	
12~13	36	34	30	30	30	46.9	33.6	
13~14	34	30	30	30	30	48.2	33.2	
14~15	35	32	30	30	30	49.3	33.9	
15~16	34	31	30	30	30	49.4	33.9	
16~17	36	33	30	30	30	48.3	33.8	
17~18	34	30	30	30	30	47.6	33.0	
18~19	34	33	30	30	30	48.3	33.3	
19~20	30	30	30	30	30	48.9	33.4	
20~21	38	34	30	30	30	41.4	32.0	
21~22	30	30	30	30	30	47.4	32.7	
22~23	30	30	30	30	30	48.3	33.0	
23~24	31	30	30	30	30	47.3	32.6	

過港部落88年9月非假日噪音逐時監測結果

監測日期: 88/09/10 單位: dB(A)

一点: (15) (1					` /			
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	61	53	52	42	41	70.2	56.6	
01~02	65	61	48	41	41	70.6	57.8	
02~03	63	61	46	42	42	70.4	57.0	
03~04	54	53	43	42	42	67.4	53.1	
04~05	60	56	43	42	42	70.0	56.1	
05~06	64	60	47	42	42	73.0	58.2	
06~07	65	58	48	44	43	72.8	58.3	
07~08	65	59	52	49	49	71.9	58.4	
08~09	67	66	53	49	49	75.0	61.8	
09~10	68	66	49	49	49	75.0	62.3	
10~11	69	64	51	49	49	71.1	59.9	
11~12	67	60	52	50	49	71.1	59.1	
12~13	67	64	53	50	50	71.1	59.4	
13~14	68	65	53	50	49	74.2	60.0	
14~15	68	59	53	51	49	72.6	60.2	
15~16	65	65	52	51	50	71.6	59.3	
16~17	68	62	53	51	51	71.4	59.9	
17~18	68	68	53	51	50	74.4	62.0	
18~19	69	68	53	51	49	72.2	61.2	
19~20	69	62	54	49	49	71.8	60.3	
20~21	61	58	51	49	49	71.6	58.2	
21~22	65	53	49	47	45	70.6	57.4	
22~23	62	57	48	46	46	69.6	56.1	
23~24	63	52	50	47	46	68.8	56.5	

過港部落88年9月非假日振動逐時監測結果

監測日期:88/09/10

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	37.7	30.3	
01~02	30	30	30	30	30	31.7	30.0	
02~03	30	30	30	30	30	30.0	30.0	
03~04	30	30	30	30	30	33.7	30.0	
04~05	30	30	30	30	30	30.0	30.0	
05~06	30	30	30	30	30	36.8	30.3	
06~07	30	30	30	30	30	36.4	30.2	
07~08	34	31	30	30	30	38.5	31.0	
08~09	32	31	30	30	30	38.6	30.7	
09~10	32	30	30	30	30	39.2	30.5	
10~11	30	30	30	30	30	36.1	30.2	
11~12	30	30	30	30	30	32.7	30.0	
12~13	30	30	30	30	30	36.2	30.1	
13~14	30	30	30	30	30	36.5	30.1	
14~15	30	30	30	30	30	32.9	30.0	
15~16	30	30	30	30	30	32.5	30.0	
16~17	30	30	30	30	30	35.5	30.3	
17~18	33	31	30	30	30	37.7	30.7	
18~19	31	30	30	30	30	38.9	30.6	
19~20	30	30	30	30	30	35.5	30.2	
20~21	30	30	30	30	30	36.9	30.2	
21~22	30	30	30	30	30	37.4	30.3	
22~23	30	30	30	30	30	37.9	30.3	
23~24	30	30	30	30	30	34.0	30.1	

過港部落88年9月假日噪音逐時監測結果

監測日期:88/09/11

單位:dB(A)

一川					` /			
時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	63	60	47	45	42	70.7	56.6	
01~02	64	61	48	43	41	68.6	56.0	
02~03	63	58	47	42	42	68.3	55.6	
03~04	63	58	45	43	42	69.8	56.1	
04~05	60	53	45	41	41	69.1	55.2	
05~06	68	63	47	44	44	71.7	59.3	
06~07	67	62	50	47	47	71.4	59.1	
07~08	69	63	52	50	49	73.0	60.4	
08~09	68	65	53	49	49	73.6	61.3	
09~10	70	64	55	51	49	73.6	62.2	
10~11	69	68	57	51	51	74.1	63.1	
11~12	70	64	56	50	50	73.7	62.4	
12~13	72	65	58	52	51	75.1	63.3	
13~14	71	67	57	54	52	75.2	63.6	
14~15	70	67	57	51	50	73.4	62.4	
15~16	69	66	56	50	50	71.4	60.9	
16~17	67	62	56	49	49	71.5	60.3	
17~18	68	66	56	51	49	73.8	62.0	
18~19	66	66	57	49	48	71.9	60.5	
19~20	67	62	52	49	49	69.8	58.9	
20~21	67	65	51	50	49	70.4	59.2	
21~22	64	64	50	49	49	70.4	57.7	
22~23	64	57	48	45	43	67.9	56.0	
23~24	64	62	50	45	43	67.8	56.6	

過港部落88年9月假日振動逐時監測結果

監測日期:88/09/11

時間L值	L5	L10	L50	L90	L95	Lmax	Leq	備註
00~01	30	30	30	30	30	34.5	30.1	
01~02	30	30	30	30	30	34.9	30.1	
02~03	30	30	30	30	30	31.6	30.0	
03~04	30	30	30	30	30	30.0	30.0	
04~05	30	30	30	30	30	32.1	30.0	
05~06	30	30	30	30	30	34.8	30.2	
06~07	30	30	30	30	30	34.9	30.2	
07~08	31	30	30	30	30	39.2	30.6	
08~09	33	32	30	30	30	40.5	31.0	
09~10	34	32	30	30	30	37.5	30.8	
10~11	34	33	30	30	30	38.3	31.2	
11~12	35	32	30	30	30	36.5	30.8	
12~13	33	32	30	30	30	40.1	31.2	
13~14	34	33	30	30	30	39.4	31.2	
14~15	33	33	30	30	30	39.7	31.3	
15~16	33	32	30	30	30	39.0	31.0	
16~17	33	31	30	30	30	40.2	30.8	
17~18	33	31	30	30	30	40.6	30.9	
18~19	31	31	30	30	30	38.0	30.7	
19~20	32	31	30	30	30	39.3	30.8	
20~21	30	30	30	30	30	40.9	30.7	
21~22	30	30	30	30	30	35.7	30.1	
22~23	30	30	30	30	30	38.2	30.3	
23~24	30	30	30	30	30	35.4	30.1	

噪音監測環境狀況紀錄表

監測點:省2與縣102甲交叉口						
日期:7/20	0時	8時	16時			
溫度()	29	30	32			
濕度(%)	63	60	60			
風速 (M/S)	0.4	0.6	0.7			
風向	西南	南	東南			

監測點:省2與縣102甲交叉口						
日期:88.7.31	O時	8時	16時			
溫度()	29	31	32			
濕度(%)	60	54	50			
風速 (M/S)	0.7	0.5	0.9			
風向	西南	南	西南			

監測點:鹽寮海濱公園						
日期:7/20	0時	8時	16時			
溫度()	28	30	32			
濕度(%)	64	61	60			
風速 (M/S)	0.6	0.6	1			
風向	南	南	東南			

監測點:鹽寮海濱公園						
日期:88.7.31	O時	8時	16時			
溫度()	28	31	32			
濕度(%)	60	55	50			
風速 (M/S)	1.1	0.8	1.3			
風向	西南	南	南			

監測點:福隆街上						
日期:7/20	0時	8時	16時			
溫度()	29	30	32			
濕度(%)	64	60	60			
風速(M/S)	0.6	0.6	0.9			
風向	東南	南	東南			

監測點:福隆街上						
日期:88.7.31	0時	8時	16時			
溫度()	29	30	31			
濕度(%)	62	52	50			
風速(M/S)	0.8	0.5	1			
風向	南	東南	南			

監測點:102縣道之新社橋						
日期:7/21	0時	8時	16時			
溫度()	31	31	33			
濕度(%)	30	30	58			
風速(M/S)	0.5	0.3	0.7			
風向	東南	南	東南			

監測點:102縣道之新社橋							
日期:88.8.1	0時	8時	16時				
溫度()	28	31	33				
濕度(%)	58	55	50				
風速(M/S)	0.2	0.5	0.7				
風向	西南	南	南				

監測點:過港社區			
日期:7/21	0時	8時	16時
溫度()	30	31	33
濕度(%)	58	60	58
風速(M/S)	0.3	0.2	0.4
風向	東南	東北	東南

監測點:過港社區				
日期:88.8.1	0時	8時	16時	
溫度 ()	28	30	32	
濕度(%)	60	54	55	
風速(M/S)	0.1	0.2	0.2	
風向	南	南	南	

噪音監測環境狀況紀錄表

監測點:省2與縣102甲交叉口			
日期:8/16	0時	8時	16時
溫度()	30	33	36
濕度(%)	42	46	50
風速 (M/S)	0.8	0.7	1
風向	東南	東南	東南

監測點	監測點:省2與縣102甲交叉口			
日期:8/15	0時	8時	16時	
溫度()	29	32	35	
濕度(%)	44	41	47	
風速 (M/S)	0.4	0.5	0.3	
風向	東南	東南	東南	

監測點:鹽寮海濱公園			
日期:8/16	0時	8時	16時
溫度()	27	31	35
濕度(%)	43	44	52
風速 (M/S)	1	1.3	2
風向	東北	東北	東北

監測點:鹽寮海濱公園			
日期:8/15	0時	8時	16時
溫度()	28	31	34
濕度(%)	45	47	5
風速 (M/S)	1.1	0.8	0.8
風向	東北	東北	東北

監測點:福隆街上				
日期:8/16	0時	8時	16時	
溫度()	28	32	35	
濕度(%)	40	55	50	
風速 (M/S)	0.8	1.9	2.5	
風向	東北	西	西	

監測點:福隆街上			
日期:8.15	0時	8時	16時
溫度()	28	30	35
濕度(%)	47	42	40
風速 (M/S)	1.8	1.4	1.2
風向	西	西	西

監測點:102縣道之新社橋			
日期:8/17	0時	8時	16時
溫度()	28	33	35
濕度(%)	52	50	45
風速 (M/S)	1.5	1.2	1.7
風向	東北	東北	西北

監測點:102縣道之新社橋			
日期:8/14	0時	8時	16時
溫度 ()	27	30	34
濕度(%)	50	48	48
風速 (M/S)	1.7	1.3	0.9
風向	東北	東北	東北

監測點:過港社區			
日期:8/17	0時	8時	16時
溫度()	29	33	34
濕度(%)	53	48	50
風速 (M/S)	0.7	1	1.3
風向	北	北	東北

監測點:過港社區				
日期:8/14	0時	8時	16時	
溫度()	27	31	34	
濕度(%)	46	50	54	
風速 (M/S)	0.8	1	0.6	
風向	北	北	北	

噪音監測環境狀況紀錄表

監測點:省2與縣102甲交叉口(澳底街道)							
日期:9/12	0時	8時	16時				
溫度()	28	30	31				
濕度(%)	45	47	42				
風速 (M/S)	0.6	0.2	0.6				
風向	東北	東北	東北				

監測點:省2與縣102甲交叉口(澳底街道)							
日期:9/13	0時	8時	16時				
溫度()	28	30	31				
濕度(%)	55	57	63				
風速 (M/S)	0.4	0.4	0.6				
風向	東北	東北	東北				

監測點:鹽寮海濱公園(核四門口)							
日期:9/12	0時	8時	16時				
溫度()	30	31	32				
濕度(%)	42	40	42				
風速 (M/S)	2.2	2.3	2.7				
風向	東南	東北	東南				

監測點:鹽寮海濱公園(核四門口)							
日期:9/13	0時	8時	16時				
溫度 ()	28	29	30				
濕度(%)	57	60	62				
風速 (M/S)	1.4	1.6	1.5				
風向	東南	東南	東北				

監測點:福隆街上(福隆電信局)							
日期:9/12	0時	8時	16時				
温度()	29	32	31				
濕度(%)	45	41	43				
風速 (M/S)	2.1	2.4	2.8				
風向	西南	西南	西南				

監測點:福隆街上(福隆電信局)							
日期:9/13 0時 8時 16時							
溫度()	29	30	30				
濕度(%)	55	59	62				
風速 (M/S)	2.7	3.5	3.2				
風向	東北	東	東北				

監測點:102縣道之新社橋(萬里橋頭)							
日期:9/10	0時	8時	16時				
溫度()	27	31	30				
濕度(%)	42	45	50				
風速 (M/S)	1.7	1.6	1.6				
風向	東北	東北	東北				

監測點:102縣道之新社橋(萬里橋頭)							
日期:9/11	0時	8時	16時				
溫度()	28	31	30				
濕度(%)	47	51	53				
風速 (M/S)	1.8	2.5	2.2				
風向	東北	東北	東北				

監測點:過港社區							
日期:9/10	0時	8時	16時				
溫度()	29	30	28				
濕度(%)	52	51	60				
風速 (M/S)	1.7	1.5	1.1				
風向	東北	東北	東北				

監測點:過港社區							
日期:9/11	0時	8時	16時				
溫度()	28	31	29				
濕度(%)	45	55	58				
風速 (M/S)	2	2.5	2.1				
風向	東北	東北	東北				

台2省道與102甲縣道交叉口88年6月非假日交通流量監測結果

台2省道與102甲縣道交叉口88年6月假日交通流量監測結果

日期: 88/6/27

日期: 88/6/28

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	20	152	20	56	371.8	0	29	257	30	46	470.0
1	16	164	20	47	352.2	1	17	231	27	48	437.4
2	8	155	17	63	381.2	2	18	245	25	55	468.4
3	8	140	24	51	344.6	3	19	260	32	54	495.2
4	9	136	20	66	377.4	4	20	280	27	62	529.6
5	19	218	28	95	569.4	5	34	385	37	60	654.7
6	32	245	34	78	561.8	6	47	419	50	62	727.9
7	67	521	37	80	869.0	7	65	590	43	61	892.0
8	68	596	39	118	1062.4	8	81	645	47	72	996.7
9	63	610	41	148	1167.2	9	91	705	51	69	1060.1
10	48	511	37	122	976.6	10	110	719	62	74	1117.5
11	62	514	43	139	1046.4	11	98	773	67	78	1190.0
12	72	541	42	145	1095.2	12	85	784	65	72	1171.9
13	77	555	47	136	1094.8	13	75	905	75	65	1289.5
14	62	552	50	127	1064.6	14	64	914	64	67	1275.4
15	67	637	46	130	1151.9	15	73	990	64	63	1342.6
16	75	676	43	137	1210.9	16	111	1072	64	65	1451.3
17	83	710	51	165	1349.7	17	99	1164	72	64	1551.1
18	89	660	48	141	1222.7	18	89	1111	64	63	1471.9
19	52	532	36	102	936.7	19	57	792	58	57	1108.6
20	35	471	34	86	814.0	20	41	632	39	58	905.4
21	30	351	30	88	691.4	21	22	510	43	58	781.5
22	19	302	35	83	628.3	22	16	391	38	51	628.1
23	21	246	32	76	548.3	23	17	303	24	57	529.8
TOTAL	1102	10195	850	2481	19888.5	TOTAL	1376	15076	1170	1481	22546.6

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

鹽寮海濱公園88年6月非假日交通流量監測結果

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

鹽寮海濱公園88年6月假日交通流量監測結果

日期: 88/6/28

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	6	143	19	58	358.6	0	9	260	27	44	450.0
1	4	144	16	46	315.4	1	10	228	28	49	436.1
2	3	150	17	55	350.9	2	10	285	25	54	501.6
3	5	127	21	53	329.9	3	11	294	41	58	556.3
4	4	138	25	64	379.7	4	7	313	32	55	545.9
5	9	211	23	85	514.8	5	9	335	42	58	597.7
6	21	225	32	73	519.8	6	18	373	44	57	641.8
7	44	495	33	94	866.0	7	38	524	37	59	792.3
8	41	540	40	107	959.2	8	44	619	50	65	936.7
9	38	538	41	129	1025.5	9	46	638	49	70	969.4
10	34	495	36	122	948.0	10	52	650	69	73	1031.2
11	40	532	47	134	1048.4	11	52	720	63	80	1110.2
12	41	524	43	132	1027.6	12	52	739	64	66	1091.1
13	40	536	42	132	1035.7	13	48	895	66	55	1216.8
14	42	530	38	131	1020.9	14	35	862	62	62	1191.5
15	40	602	45	124	1086.6	15	34	947	56	69	1282.4
16	37	655	47	135	1173.5	16	67	1003	55	62	1332.6
17	59	635	51	151	1218.6	17	63	1062	64	64	1415.2
18	47	585	42	116	1038.5	18	46	958	58	63	1284.0
19	30	494	29	104	0.088	19	30	713	54	51	991.0
20	22	423	30	83	742.0	20	18	533	36	56	783.6
21	16	335	32	90	677.3	21	12	463	46	63	749.8
22	11	310	33	85	638.4	22	10	355	39	51	591.3
23	10	229	26	82	533.3	23	12	277	27	56	505.4
TOTAL	642	9597	808	2385	18688.6	TOTAL	731	14044	1133	1443	21003.9

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

福隆街上88年6月非假日交通流量監測結果

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

福隆街上88年6月假日交通流量監測結果

日期: 88/6/28

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	7	166	21	47	352.4	0	21	266	28	43	461.9
1	7	154	18	49	340.5	1	20	240	30	49	456.0
2	9	182	15	56	385.7	2	25	285	26	57	520.4
3	9	177	17	60	393.8	3	20	300	42	55	559.0
4	11	192	29	73	474.1	4	25	326	36	60	589.8
5	13	235	19	76	508.8	5	28	357	42	65	649.8
6	26	258	24	66	517.9	6	32	385	47	58	669.3
7	38	381	35	87	731.5	7	51	545	40	58	824.1
8	42	489	43	103	903.2	8	81	638	58	66	991.9
9	33	481	42	102	887.2	9	69	647	55	75	1015.6
10	36	446	45	106	873.7	10	77	667	72	80	1090.8
11	32	476	42	141	998.8	11	60	759	63	75	1141.2
12	48	495	54	140	1046.9	12	70	755	64	75	1142.8
13	49	526	51	179	1190.0	13	78	707	65	61	1060.4
14	28	581	31	174	1178.8	14	56	875	64	70	1241.3
15	47	585	40	144	1118.8	15	65	1025	61	65	1374.1
16	71	664	39	149	1224.3	16	98	1051	58	69	1422.2
17	59	582	44	155	1165.1	17	91	1061	67	69	1446.9
18	44	491	33	122	945.3	18	62	1020	62	67	1375.9
19	27	406	23	107	786.6	19	46	752	60	55	1058.6
20	26	372	24	87	695.4	20	35	547	40	60	822.9
21	18	284	32	86	613.9	21	29	445	47	69	760.8
22	19	303	34	81	622.9	22	30	375	42	55	640.7
23	12	220	23	86	531.4	23	27	288	30	57	529.9
TOTAL	710	9147	779	2476	18487.0	TOTAL	1195	14314	1197	1513	21846.3

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

102縣道之新社橋88年7月非假日交通流量監測結果

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

102縣道之新社橋88年7月假日交通流量監測結果

日期: 88/7/5

時間	機車	小型車	大型車	特種車	PCU/H
0	5	26	2	0	33.2
1	3	26	1	1	31.2
2	1	23	0	0	25.2
3	4	26	1	1	31.6
4	2	21	1	0	25.0
5	4	22	1	0	26.2
6	8	20	0	0	24.8
7	9	26	1	2	37.2
8	16	39	3	0	51.8
9	12	37	2	2	51.4
10	13	39	1	0	48.7
11	18	40	4	5	71.6
12	9	39	2	3	56.1
13	11	50	1	2	63.3
14	20	44	2	5	71.9
15	15	55	2	6	86.8
16	16	47	6	5	83.9
17	23	47	4	2	74.1
18	15	37	3	0	51.8
19	10	27	2	0	36.4
20	8	26	1	0	31.9
21	7	30	0	0	34.5
22	6	24	0	0	27.7
23	6	22	1	0	28.5
TOTAL	239	792	43	36	1104.8

時間	機車	小型車	大型車	特種車	PCU/H
0	5	30	1	0	34.5
1	2	25	0	0	26.1
2	4	42	0	0	45.4
3	5	32	0	0	36.0
4	6	46	1	0	50.8
5	15	45	0	2	58.3
6	9	59	1	0	64.9
7	12	55	1	0	63.7
8	17	56	1	1	70.0
9	24	55	1	1	72.6
10	20	60	3	0	75.2
11	15	56	1	1	67.1
12	15	65	3	1	80.9
13	24	55	3	0	72.6
14	14	75	1	0	86.4
15	11	63	0	1	71.2
16	18	61	1	0	73.0
17	22	58	3	2	80.8
18	18	71	2	0	84.1
19	25	52	1	1	69.4
20	11	40	0	0	46.6
21	8	39	3	0	49.1
22	8	46	2	0	54.2
23	4	45	2	0	51.8
TOTAL	312	1233	32	11	1484.7

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

過港部落88年7月非假日交通流量監測結果

過港部落88年7月假日交通流量監測結果

日期: 88/7/5

時間	機車	小型車	大型車	特種車	PCU/H
0	1	2	0	0	2.6
1	0	1	0	0	0.8
2	1	1	0	0	1.9
3	0	1	0	0	1.4
4	0	2	0	0	1.6
5	2	6	0	0	7.0
6	8	5	0	0	9.2
7	11	8	0	0	13.5
8	6	11	0	0	14.2
9	3	6	0	0	7.2
10	2	4	0	0	5.4
11	4	8	0	0	9.8
12	1	9	0	0	9.8
13	1	2	0	0	3.1
14	0	6	1	0	8.2
15	4	4	0	0	6.2
16	4	9	0	0	11.0
17	6	13	0	0	15.9
18	7	8	0	0	11.8
19	2	3	0	0	4.0
20	2	2	0	0	3.0
21	0	2	0	0	1.7
22	1	2	0	0	2.4
23	1	1	0	0	2.0
TOTAL	68	117	1	0	153.7

時間	機車	小型車	大型車	特種車	PCU/H
0	2	4	0	0	4.5
1	0	2	0	0	2.0
2	0	1	0	0	1.2
3	1	1	0	0	1.6
4	3	2	0	0	3.4
5	2	0	0	0	1.4
6	2	5	0	0	5.5
7	8	6	0	0	10.4
8	9	9	0	0	13.5
9	9	14	0	0	18.7
10	10	15	0	0	19.9
11	7	15	0	0	18.8
12	5	18	0	0	20.6
13	6	16	0	0	19.5
14	6	12	0	0	15.5
15	7	8	0	0	12.1
16	9	13	0	0	17.3
17	9	9	0	0	13.4
18	5	13	0	0	15.6
19	2	11	0	0	12.2
20	1	3	0	0	3.9
21	0	4	0	0	3.6
22	2	3	0	0	3.6
23	4	3	0	0	5.0
TOTAL	108	189	0	0	243.2

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

機車

核四廠門口88年6月非假日交通流量監測結果

小型車

大型車

日期: 88/6/28

PCU/H

特種車

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

核四廠門口88年6月假日交通流量監測結果

時間 機車 小型車 大型車 特種車 PCU/H

日期: 88/6/27

時間

0	2	12	0	0	14.1	0	2	12	0	0	12.6
1	1	9	0	0	10.0	1	1	7	0	0	8.5
2	1	6	0	0	6.4	2	3	11	0	0	12.6
3	3	9	0	0	11.2	3	1	10	1	0	11.4
4	1	7	0	1	10.2	4	3	7	0	0	8.5
5	5	13	1	0	17.8	5	2	7	0	1	13.4
6	9	27	2	1	38.4	6	7	11	2	2	23.4
7	28	55	5	3	86.8	7	15	33	2	2	50.9
8	35	72	3	2	99.7	8	16	39	3	2	59.5
9	21	53	1	2	72.1	9	19	28	2	0	41.5
10	13	37	4	0	53.2	10	13	33	1	1	42.9
11	12	36	1	1	46.8	11	16	30	1	1	42.6
12	21	36	1	2	54.1	12	16	31	1	2	47.2
13	16	38	2	1	51.0	13	17	28	1	0	40.0
14	10	29	4	0	42.7	14	9	24	2	1	35.2
15	13	30	1	1	41.6	15	12	22	1	1	34.3
16	12	42	3	1	56.1	16	10	29	0	1	36.2
17	38	64	2	5	100.6	17	19	42	3	2	64.2
18	34	57	2	1	80.3	18	15	33	3	1	48.7
19	22	50	1	0	64.0	19	10	25	1	0	34.4
20	15	22	1	0	31.7	20	5	18	0	0	20.8
21	10	19	0	0	24.2	21	6	19	1	0	23.4
22	6	13	0	0	17.4	22	8	14	0	0	18.2
23	4	16	0	0	19.0	23	7	9	0	0	12.6
TOTAL	331	750	33	22	1049.4	TOTAL	232	521	26	18	743.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

台2省道與102甲縣道交叉口88年7月非假日交通流量監測結果

台2省道與102甲縣道交叉口88年7月假日交通流量監測結果

日期: 88/7/20

日期:	88/7/31

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	24	123	21	67	378.0	0	23	295	31	60	548.5
1	18	141	26	58	376.0	1	16	313	22	74	587.0
2	6	89	12	61	299.0	2	22	288	34	70	577.0
3	5	103	27	46	297.5	3	31	324	19	58	551.5
4	11	81	10	59	283.5	4	39	308	28	71	596.5
5	29	122	29	118	548.5	5	62	517	43	68	838.0
6	48	196	36	83	541.0	6	66	495	42	79	849.0
7	102	637	44	77	1007.0	7	103	674	51	80	1067.5
8	87	594	38	123	1082.5	8	112	759	50	121	1278.0
9	96	603	51	166	1251.0	9	87	771	62	113	1277.5
10	73	488	34	124	964.5	10	95	703	71	123	1261.5
11	112	514	43	136	1064.0	11	90	605	80	141	1233.0
12	108	448	27	142	982.0	12	88	597	76	115	1138.0
13	124	602	40	128	1128.0	13	73	612	76	103	1109.5
14	89	496	55	133	1049.5	14	62	705	56	111	1181.0
15	113	588	39	152	1178.5	15	75	622	58	98	1069.5
16	126	591	42	173	1257.0	16	91	675	71	103	1171.5
17	119	723	57	202	1502.5	17	97	813	74	92	1285.5
18	126	692	56	171	1380.0	18	115	803	61	87	1243.5
19	68	631	39	123	1112.0	19	82	721	53	80	1108.0
20	47	522	41	92	903.5	20	60	602	39	75	935.0
21	40	404	22	97	759.0	21	37	551	40	66	847.5
22	22	314	29	83	632.0	22	19	496	32	73	788.5
23	26	231	30	79	541.0	23	22	403	17	67	649.0
TOTAL	1619	9933	848	2693	20517.5	TOTAL	1567	13652	1186	2128	23191.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

鹽寮海濱公園88年7月非假日交通流量監測結果

鹽寮海濱公園88年7月假日交通流量監測結果

日期: 88/7/20

日期: 88/7/31

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	10	107	21	81	397.0	0	7	302	30	57	536.5
1	6	111	17	61	331.0	1	10	300	29	73	582.0
2	2	92	15	53	282.0	2	10	371	31	69	645.0
3	5	89	20	55	296.5	3	13	402	41	70	700.5
4	3	80	13	50	257.5	4	11	358	38	63	628.5
5	11	130	22	98	473.5	5	6	417	49	72	734.0
6	33	186	37	83	525.5	6	18	438	35	69	724.0
7	69	593	41	103	1018.5	7	29	589	40	88	947.5
8	60	582	45	111	1035.0	8	28	694	53	116	1162.0
9	71	550	50	139	1102.5	9	17	600	62	129	1119.5
10	70	493	39	133	1005.0	10	13	587	77	110	1077.5
11	82	600	51	110	1073.0	11	18	542	75	153	1160.0
12	78	512	20	125	966.0	12	22	503	73	94	942.0
13	76	587	36	137	1108.0	13	16	589	46	85	944.0
14	80	466	37	140	1000.0	14	13	617	58	102	1045.5
15	81	514	40	156	1102.5	15	9	564	47	115	1007.5
16	72	582	52	155	1187.0	16	17	523	58	102	953.5
17	102	637	50	176	1316.0	17	29	609	43	87	970.5
18	92	660	50	141	1229.0	18	31	517	52	93	915.5
19	61	613	33	140	1129.5	19	25	480	43	71	791.5
20	40	412	28	87	749.0	20	14	425	38	68	712.0
21	29	398	26	92	740.5	21	15	488	40	75	800.5
22	17	303	22	83	604.5	22	8	416	36	80	732.0
23	17	212	21	80	502.5	23	13	359	29	61	606.5
TOTAL	1167	9509	786	2589	19431.5	TOTAL	392	11690	1123	2102	20438.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

福隆街上88年7月非假日交通流量監測結果

福隆街上88年7月假日交通流量監測結果

日期: 88/7/20

日期: 88/7/31

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	9	145	27	48	347.5	0	21	293	27	60	537.5
1	7	126	19	61	350.5	1	28	315	33	71	608.0
2	6	167	11	50	342.0	2	30	380	29	73	672.0
3	12	201	8	63	412.0	3	21	391	43	61	670.5
4	5	194	24	56	412.5	4	36	372	41	69	679.0
5	7	176	12	73	422.5	5	27	416	51	80	771.5
6	18	243	19	62	476.0	6	31	465	38	73	775.5
7	36	275	39	83	620.0	7	43	600	44	92	985.5
8	52	436	48	92	834.0	8	62	703	57	120	1208.0
9	20	381	56	50	653.0	9	37	612	69	140	1188.5
10	41	374	51	79	733.5	10	41	603	86	127	1176.5
11	26	445	36	128	914.0	11	26	570	72	136	1135.0
12	41	418	43	112	860.5	12	17	521	66	108	985.5
13	54	537	52	247	1409.0	13	46	572	40	91	948.0
14	39	572	10	236	1319.5	14	38	602	58	115	1082.0
15	58	437	19	194	1086.0	15	26	583	51	102	1004.0
16	63	581	24	174	1182.5	16	30	592	57	111	1054.0
17	48	496	31	170	1092.0	17	41	520	46	84	884.5
18	39	407	25	137	887.5	18	49	612	60	99	1053.5
19	21	358	12	141	815.5	19	33	547	53	74	891.5
20	24	297	18	94	627.0	20	31	465	43	70	776.5
21	15	256	20	76	531.5	21	29	430	36	81	759.5
22	23	261	22	70	526.5	22	34	471	41	87	831.0
23	7	189	13	82	464.5	23	31	393	30	63	657.5
TOTAL	671	7972	639	2578	17319.5	TOTAL	808	12028	1171	2187	21335.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

102縣道之新社橋88年7月非假日交通流量監測結果

102縣道之新社橋88年7月假日交通流量監測結果

日期: 88/7/21

日期: 88/8/1

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	3	7	2	1	15.5	0	4	43	0	0	45.0
1	2	12	0	0	13.0	1	2	26	0	0	27.0
2	0	8	0	0	8.0	2	7	69	0	0	72.5
3	3	16	0	0	17.5	3	5	37	0	0	39.5
4	1	9	1	0	11.5	4	11	66	0	0	71.5
5	4	15	0	0	17.0	5	29	58	0	4	84.5
6	7	6	0	0	9.5	6	14	89	0	0	96.0
7	6	10	2	3	26.0	7	13	76	0	0	82.5
8	13	29	3	0	41.5	8	18	70	0	0	79.0
9	12	32	5	4	60.0	9	35	56	0	0	73.5
10	5	27	2	0	33.5	10	26	100	6	0	125.0
11	15	45	7	10	96.5	11	7	74	0	0	77.5
12	8	38	3	4	60.0	12	20	105	6	0	127.0
13	12	50	0	6	74.0	13	35	82	4	0	107.5
14	26	42	2	8	83.0	14	18	126	0	0	135.0
15	10	60	4	10	103.0	15	7	93	0	0	96.5
16	7	45	9	3	75.5	16	21	75	0	0	85.5
17	20	53	4	3	80.0	17	31	80	6	3	116.5
18	14	42	5	1	62.0	18	19	124	4	0	141.5
19	7	26	6	0	41.5	19	44	79	2	0	105.0
20	9	18	2	0	26.5	20	13	35	0	0	41.5
21	3	23	0	0	24.5	21	11	63	7	0	82.5
22	6	17	0	0	20.0	22	5	80	4	0	90.5
23	6	6	2	1	16.0	23	1	71	3	0	77.5
TOTAL	199	636	59	54	1015.5	TOTAL	396	1777	42	7	2080.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

過港部落88年7月非假日交通流量監測結果

過港部落88年7月假日交通流量監測結果

日期: 88/7/21

日期: 88/8/1

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	2	2	0	0	3.0	0	2	3	0	0	4.0
1	0	1	0	0	1.0	1	0	4	0	0	4.0
2	0	0	0	0	0.0	2	0	3	0	0	3.0
3	1	2	0	0	2.5	3	1	1	0	0	1.5
4	0	4	0	0	4.0	4	3	2	0	0	3.5
5	4	10	0	0	12.0	5	4	0	0	0	2.0
6	13	8	0	0	14.5	6	2	7	0	0	8.0
7	18	10	0	0	19.0	7	15	8	0	0	15.5
8	10	16	0	0	21.0	8	8	14	0	0	18.0
9	7	10	0	0	13.5	9	3	17	0	0	18.5
10	2	8	0	0	9.0	10	0	10	0	0	10.0
11	5	14	0	0	16.5	11	2	8	0	0	9.0
12	2	12	0	0	13.0	12	1	16	0	0	16.5
13	3	5	0	0	6.5	13	0	21	0	0	21.0
14	0	11	0	0	11.0	14	3	12	0	0	13.5
15	4	7	0	0	9.0	15	3	4	0	0	5.5
16	5	13	0	0	15.5	16	7	13	0	0	16.5
17	10	20	0	0	25.0	17	11	8	0	0	13.5
18	13	12	0	0	18.5	18	6	12	0	0	15.0
19	6	4	0	0	7.0	19	4	12	0	0	14.0
20	2	2	0	0	3.0	20	3	3	0	0	4.5
21	0	3	0	0	3.0	21	0	2	0	0	2.0
22	2	1	0	0	2.0	22	0	4	0	0	4.0
23	1	0	0	0	0.5	23	2	1	0	0	2.0
TOTAL	110	175	0	0	230.0	TOTAL	80	185	0	0	225.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

核四廠門口88年7月非假日交通流量監測結果

核四廠門口88年7月假日交通流量監測結果

日期: 88/7/20

日期: 88/7/31

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	1	4	0	1	7.5	0	3	11	0	0	12.5
1	0	3	0	0	3.0	1	3	7	0	0	8.5
2	0	0	0	0	0.0	2	4	16	0	0	18.0
3	2	3	0	0	4.0	3	0	12	1	0	14.0
4	0	0	0	2	6.0	4	6	6	0	0	9.0
5	0	6	2	0	10.0	5	2	8	1	2	17.0
6	10	30	3	0	41.0	6	8	12	4	3	33.0
7	39	71	6	3	111.5	7	21	36	2	3	59.5
8	40	83	2	1	110.0	8	29	57	6	2	89.5
9	28	66	0	2	86.0	9	34	43	4	0	68.0
10	17	44	4	0	60.5	10	17	46	0	0	54.5
11	22	47	0	3	67.0	11	18	50	0	2	65.0
12	37	56	0	3	83.5	12	25	53	0	4	77.5
13	31	63	1	0	80.5	13	33	42	2	0	62.5
14	12	39	3	0	51.0	14	16	38	3	1	55.0
15	16	37	0	0	45.0	15	20	31	2	3	54.0
16	10	56	4	0	69.0	16	11	44	0	0	49.5
17	44	81	0	6	121.0	17	28	63	4	4	97.0
18	45	79	2	0	105.5	18	25	58	6	2	88.5
19	29	66	2	0	84.5	19	17	36	3	1	53.5
20	20	26	0	0	36.0	20	9	26	0	0	30.5
21	13	17	0	0	23.5	21	10	30	1	0	37.0
22	6	9	0	0	12.0	22	15	18	0	0	25.5
23	3	11	0	0	12.5	23	12	12	0	0	18.0
TOTAL	425	897	29	21	1230.5	TOTAL	366	755	39	27	1097.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

台2省道與102甲縣道交叉口88年8月非假日交通流量監測結果

台2省道與102甲縣道交叉口88年8月假日交通流量監測結果

日期: 88/8/16

日期: 88/8/15

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	18	121	21	41	46.0	0	37	223	26	38	30.0
1	21	136	18	40	302.5	1	22	167	35	40	368.0
2	11	225	22	66	472.5	2	17	205	20	56	421.5
3	13	187	22	47	378.5	3	8	191	51	69	504.0
4	6	193	33	70	472.0	4	8	224	30	65	483.0
5	16	336	36	81	659.0	5	16	287	30	59	532.0
6	18	303	38	68	592.0	6	28	352	60	63	675.0
7	33	446	33	56	696.5	7	31	469	31	58	720.5
8	46	613	43	111	1055.0	8	29	503	40	42	723.5
9	37	589	33	137	1084.5	9	66	567	34	33	767.0
10	21	534	37	103	927.5	10	67	631	50	41	887.5
11	19	489	38	109	901.5	11	56	774	48	38	1012.0
12	37	669	60	137	1218.5	12	37	902	63	40	1166.5
13	39	583	62	136	1134.5	13	41	1134	80	36	1422.5
14	49	668	48	123	1157.5	14	40	1003	66	42	1281.0
15	33	754	55	112	1216.5	15	29	1154	71	39	1427.5
16	31	836	47	119	1302.5	16	63	1302	60	42	1579.5
17	56	734	49	141	1283.0	17	59	1387	73	50	1712.5
18	67	663	49	121	1157.5	18	44	1301	66	50	1605.0
19	50	502	40	87	868.0	19	22	811	67	43	1085.0
20	30	493	33	71	787.0	20	17	592	40	45	815.5
21	21	362	37	63	635.5	21	8	421	51	58	701.0
22	16	339	48	69	650.0	22	11	269	50	38	488.5
23	17	301	41	71	604.5	23	12	201	29	55	430.0
TOTAL	705	11076	943	2179	19851.5	TOTAL	768	15070	1171	1140	21216.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

鹽寮海濱公園88年8月非假日交通流量監測結果

鹽寮海濱公園88年8月假日交通流量監測結果

日期: 88/8/16

日期: 88/8/15

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	4	119	17	35	260.0	0	4	217	24	38	381.0
1	2	124	20	31	258.0	1	7	180	31	42	371.5
2	3	234	20	53	434.5	2	11	211	22	55	425.5
3	5	164	21	42	334.5	3	8	174	50	67	479.0
4	5	202	42	79	525.5	4	3	235	31	60	478.5
5	8	317	30	76	609.0	5	7	264	38	52	499.5
6	12	273	36	58	525.0	6	11	303	51	65	605.5
7	31	451	27	69	727.5	7	35	412	29	47	628.5
8	25	572	40	102	970.5	8	30	525	47	30	724.0
9	14	556	35	125	1008.0	9	27	554	32	21	694.5
10	8	493	31	100	859.0	10	18	603	58	49	875.0
11	7	498	46	117	944.5	11	24	756	42	32	948.0
12	12	612	69	135	1161.0	12	16	876	68	44	1152.0
13	9	552	57	127	1051.5	13	17	1095	88	31	1372.5
14	13	678	42	116	1116.5	14	24	922	60	41	1177.0
15	11	763	53	102	1180.5	15	12	1139	69	35	1388.0
16	8	815	50	125	1294.0	16	13	1288	52	38	1512.5
17	26	698	58	132	1223.0	17	29	1399	79	54	1733.5
18	14	602	42	102	999.0	18	28	1234	63	46	1512.0
19	8	462	31	81	771.0	19	15	821	71	39	1087.5
20	9	463	32	65	726.5	20	11	540	38	47	762.5
21	5	327	40	63	598.5	21	8	381	58	62	687.0
22	7	352	52	76	687.5	22	9	262	43	35	457.5
23	5	288	36	84	614.5	23	6	153	25	60	386.0
TOTAL	251	10615	927	2095	18879.5	TOTAL	373	14544	1169	1090	20338.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

福隆街上88年8月非假日交通流量監測結果

小型車

大型車

機車

福隆街上88年8月假日交通流量監測結果

日期: 88/8/15

日期: 88/8/16

特種車

PCU/H

278.5

301.5

451.0

365.5

599.0

634.0

556.5

786.0

1041.5

1085.5

903.5

993.0

1258.5

1143.0

1180.5

1260.5

1396.0

1296.5

1094.0

840.5

739.0

648.5

731.0

649.0

20232.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

時間

TOTAL

102縣道之新社橋88年8月非假日交通流量監測結果

102縣道之新社橋88年8月假日交通流量監測結果

日期: 88/8/17

日期: 88/8/14

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	8	45	1	0	51.0	0	8	24	1	0	30.0
1	4	42	2	2	54.0	1	3	23	0	0	24.5
2	2	35	0	1	39.0	2	3	30	1	0	33.5
3	5	32	0	0	34.5	3	6	32	0	1	38.0
4	3	28	0	0	29.5	4	2	39	1	1	45.0
5	4	29	1	0	33.0	5	7	44	0	0	47.5
6	6	30	0	0	33.0	6	5	36	0	0	38.5
7	7	36	1	0	41.5	7	10	47	1	1	57.0
8	16	52	2	0	64.0	8	14	53	2	2	70.0
9	11	46	0	0	51.5	9	15	53	0	2	66.5
10	21	54	1	0	66.5	10	18	31	0	0	40.0
11	25	37	3	1	58.5	11	18	46	0	1	58.0
12	11	44	3	2	61.5	12	12	37	0	1	46.0
13	10	55	1	0	62.0	13	16	39	2	0	51.0
14	17	55	2	3	76.5	14	10	48	2	1	60.0
15	24	56	1	5	85.0	15	15	53	0	2	66.5
16	27	53	5	5	91.5	16	20	59	2	0	73.0
17	27	49	6	3	83.5	17	11	47	1	0	54.5
18	15	39	2	0	50.5	18	18	39	0	0	48.0
19	12	31	0	0	37.0	19	12	31	0	0	37.0
20	8	34	0	0	38.0	20	10	49	0	0	54.0
21	10	41	0	0	46.0	21	8	27	0	0	31.0
22	7	36	1	0	41.5	22	13	29	0	0	35.5
23	7	40	11	0	45.5	23	7	32	3	0	41.5
TOTAL	287	999	33	22	1274.5	TOTAL	261	948	16	12	1146.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

過港部落88年8月非假日交通流量監測結果

過港部落88年8月假日交通流量監測結果

日期: 88/8/17

日期: 88/8/14

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	0	3	0	0	3.0	0	2	4	0	0	5.0
1	0	1	0	0	1.0	1	0	1	0	0	1.0
2	2	3	0	0	4.0	2	0	0	0	0	0.0
3	0	1	0	0	1.0	3	2	1	0	0	2.0
4	0	0	0	0	0.0	4	4	3	0	0	5.0
5	0	2	0	0	2.0	5	0	1	0	0	1.0
6	0	1	0	0	1.0	6	2	3	0	0	4.0
7	1	5	0	0	5.5	7	5	6	0	0	8.5
8	3	2	0	0	3.5	8	10	7	0	0	12.0
9	0	3	0	0	3.0	9	7	13	0	0	16.5
10	2	3	0	0	4.0	10	19	18	0	0	27.5
11	4	5	0	0	7.0	11	12	24	0	0	30.0
12	0	3	0	0	3.0	12	6	17	0	0	20.0
13	0	1	0	0	1.0	13	7	12	0	0	15.5
14	0	2	3	0	8.0	14	10	15	0	0	20.0
15	7	2	0	0	5.5	15	12	7	0	0	13.0
16	2	5	0	0	6.0	16	6	13	0	0	16.0
17	0	3	0	0	3.0	17	3	6	0	0	7.5
18	2	4	0	0	5.0	18	5	10	0	0	12.5
19	0	2	0	0	2.0	19	2	13	0	0	14.0
20	2	3	0	0	4.0	20	0	4	0	0	4.0
21	0	1	0	0	1.0	21	0	6	0	0	6.0
22	0	4	0	0	4.0	22	4	3	0	0	5.0
23	2	3	0	0	4.0	23	7	7	0	0	10.5
TOTAL	27	62	3	0	81.5	TOTAL	125	194	0	0	256.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

核四廠門口88年8月非假日交通流量監測結果

核四廠門口88年8月假日交通流量監測結果

日期: 88/8/15

PCU/H 12.0 9.0 10.5 11.0 8.5 12.5 17.5 47.5 40.0 19.5 34.0 29.5 21.0 20.5 21.5 22.5 25.0 40.0 23.5 25.0 18.0 16.0 13.0 9.5 507.0

日期: 88/8/16

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	
0	3	14	0	0	15.5	0	2	11	0	0	
1	3	11	0	0	12.5	1	0	7	1	0	
2	1	8	0	0	8.5	2	3	9	0	0	
3	5	16	1	0	20.5	3	2	10	0	0	
4	2	13	1	0	16.0	4	1	8	0	0	
5	10	22	0	1	30.0	5	3	8	0	1	
6	6	30	0	3	42.0	6	7	12	1	0	
7	17	49	4	2	71.5	7	15	35	1	1	
8	22	57	4	0	76.0	8	8	28	1	2	
9	14	30	0	2	43.0	9	11	14	0	0	
10	8	28	3	0	38.0	10	12	25	0	1	
11	2	25	0	0	26.0	11	19	16	2	0	
12	2	19	0	0	20.0	12	14	12	1	0	
13	3	14	1	0	17.5	13	7	17	0	0	
14	5	20	3	1	31.5	14	5	13	0	2	
15	11	25	0	2	36.5	15	9	18	0	0	
16	8	33	2	2	47.0	16	10	20	0	0	
17	29	51	2	4	81.5	17	16	27	1	1	
18	23	43	1	2	62.5	18	11	18	0	0	
19	18	48	0	0	57.0	19	8	21	0	0	
20	11	21	2	0	30.5	20	4	16	0	0	
21	8	19	0	0	23.0	21	4	12	1	0	
22	6	15	0	1	21.0	22	6	10	0	0	
23	3	20	11	0	23.5	23	5	7	0	0	
TOTAL	220	631	25	20	851.0	TOTAL	182	374	9	8	

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

台2省道與102甲縣道交叉口88年9月非假日交通流量監測結果

台2省道與102甲縣道交叉口88年9月假日交通流量監測結果

日期: 88/09/13

日期: 88/09/12

時 間	機車	小型車	大型車	特種車	PCU/H	 時 間	機車	小型車	大型車	特種車	PCU/H
0	11	137	7	66	354.5	0	23	237	23	37	30.0
1	7	155	11	46	318.5	1	17	262	17	18	358.5
2	10	113	6	58	304.0	2	20	197	16	28	323.0
3	6	108	13	67	338.0	3	11	162	22	45	346.5
4	13	96	6	75	339.5	4	13	123	26	31	274.5
5	22	123	2	83	387.0	5	7	245	17	36	390.5
6	14	307	10	70	544.0	6	14	558	34	45	768.0
7	37	694	14	106	1058.5	7	37	894	58	67	1229.5
8	45	802	22	123	1237.5	8	21	1123	29	66	1389.5
9	16	613	14	137	1060.0	9	39	1354	45	78	1697.5
10	23	506	12	108	865.5	10	54	1239	60	83	1635.0
11	17	445	28	122	875.5	11	66	1009	41	44	1256.0
12	19	508	22	95	846.5	12	44	1237	28	63	1504.0
13	30	497	19	123	919.0	13	58	1024	39	45	1266.0
14	31	446	40	106	859.5	14	50	993	55	48	1272.0
15	22	373	46	89	743.0	15	31	1145	67	41	1417.5
16	28	509	22	122	933.0	16	45	1354	43	63	1651.5
17	29	637	17	145	1120.5	17	67	1003	66	46	1306.5
18	45	715	20	151	1230.5	18	72	924	53	39	1183.0
19	46	611	14	139	1079.0	19	43	1237	39	45	1471.5
20	22	492	23	112	885.0	20	29	1105	29	72	1393.5
21	15	477	15	97	805.5	21	30	821	31	41	1021.0
22	11	503	13	88	798.5	22	22	497	22	46	690.0
23	9	391	11	93	696.5	23	29	305	16	50	501.5
TOTAL	528	10258	407	2421	18599.0	TOTAL	842	19048	876	1177	24752.0

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

鹽寮海濱公園88年9月非假日交通流量監測結果

鹽寮海濱公園88年9月假日交通流量監測結果

日期: 88/09/12

日期: 88/09/13

時 間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	14	131	7	62	338.0	0	14	225	20	34	374.0
1	7	144	10	42	293.5	1	7	258	16	20	353.5
2	7	106	8	47	266.5	2	7	174	12	23	270.5
3	6	110	15	60	323.0	3	3	155	20	39	313.5
4	8	95	8	68	319.0	4	2	117	18	34	256.0
5	5	117	6	77	362.5	5	2	233	15	31	357.0
6	4	295	8	69	520.0	6	1	523	31	41	708.5
7	9	675	11	100	1001.5	7	5	866	53	62	1160.5
8	19	800	17	119	1200.5	8	14	1095	24	61	1333.0
9	14	611	12	130	1032.0	9	22	1277	41	73	1589.0
10	25	501	10	102	839.5	10	23	1206	55	77	1558.5
11	16	425	24	117	832.0	11	16	1005	40	38	1207.0
12	8	500	20	91	817.0	12	25	1206	29	61	1459.5
13	11	486	16	118	877.5	13	34	1017	34	42	1228.0
14	14	730	41	110	1149.0	14	21	987	52	43	1230.5
15	8	365	42	93	732.0	15	18	1092	63	40	1347.0
16	13	503	21	118	905.5	16	12	1293	40	57	1550.0
17	19	666	15	130	1095.5	17	27	1024	63	41	1286.5
18	20	710	18	147	1197.0	18	16	911	52	34	1125.0
19	14	608	12	130	1029.0	19	11	1185	37	41	1387.5
20	8	478	20	111	855.0	20	13	1088	28	63	1339.5
21	11	463	18	92	780.5	21	8	811	30	38	989.0
22	7	492	11	87	778.5	22	5	472	20	43	643.5
23	4	380	7_	92	672.0	23	9	304	11	47	471.5
TOTAL	271	10391	377	2312	18216.5	TOTAL	315	18524	804	1083	23538.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

福隆街上88年9月非假日交通流量監測結果

福隆街上88年9月假日交通流量監測結果

日期: 88/09/12

日期: 88/09/13

時間	機車	小型車	大型車	特種車	PCU/H	時間	機車	小型車	大型車	特種車	PCU/H
0	17	196	18	51	393.5	0	21	296	29	30	454.5
1	7	243	20	54	448.5	1	12	208	25	19	321.0
2	9	172	10	47	337.5	2	7	231	15	32	360.5
3	15	201	25	63	447.5	3	6	180	30	42	369.0
4	20	85	15	62	311.0	4	18	158	27	26	299.0
5	21	189	13	74	447.5	5	23	271	31	28	428.5
6	18	281	15	68	524.0	6	31	396	29	37	580.5
7	32	472	25	87	799.0	7	45	517	28	39	712.5
8	37	781	34	102	1173.5	8	67	791	32	53	1047.5
9	45	638	29	115	1063.5	9	58	976	49	71	1316.0
10	35	528	37	94	901.5	10	81	1021	39	61	1322.5
11	26	479	29	131	943.0	11	74	1203	45	63	1519.0
12	37	572	31	96	940.5	12	63	1018	37	56	1291.5
13	15	419	40	86	764.5	13	71	985	41	36	1210.5
14	36	481	31	74	783.0	14	49	1215	46	53	1490.5
15	27	512	41	107	928.5	15	58	1326	59	61	1656.0
16	38	531	20	94	872.0	16	86	1473	56	38	1742.0
17	49	671	19	84	985.5	17	108	1217	72	43	1544.0
18	36	586	30	108	988.0	18	102	1021	56	47	1325.0
19	27	495	20	121	911.5	19	79	987	51	41	1251.5
20	15	471	32	86	800.5	20	67	1032	39	67	1344.5
21	31	510	18	74	783.5	21	53	936	43	51	1201.5
22	21	391	26	80	693.5	22	26	621	38	60	890.0
23	12	326	19	72	586.0	23	18	418	27	55	646.0
TOTAL	626	10230	597	2030	17827.0	TOTAL	1223	18497	944	1109	24323.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

102縣道之新社橋88年9月非假日交通流量監測結果

102縣道之新社橋88年9月假日交通流量監測結果

日期: 88/09/11

日期: 88/09/10

n+ 88	144 =	.1. =1 ==		4+1F±	DOLL /III		B 1414 +	.l. #II 	ᅩᅖᆂ	4+1+ 1	DOLL/III
時間	機車	小型車	大型車	特種車	PCU/H	時		小型車	大型車	特種車	PCU/H
0	3	35	1	0	38.5	0	4	38	2	0	44.0
1	3	27	0	0	28.5	1	2	33	0	0	34.0
2	2	23	0	0	24.0	2	2	26	0	0	27.0
3	4	30	0	0	32.0	3	5	31	0	1	36.5
4	2	24	0	0	25.0	4	3	38	0	0	39.5
5	5	36	0	1	41.5	5	6	44	1	0	49.0
6	7	45	0	0	48.5	6	8	65	1	0	71.0
7	13	79	1	2	93.5	7	17	74	0	3	91.5
8	18	88	1	1	102.0	8	25	63	3	1	84.5
9	9	64	0	3	77.5	9	18	58	2	2	77.0
10	12	66	1	0	74.0	10	16	62	4	0	78.0
11	17	59	0	2	73.5	11	16	60	6	1	83.0
12	20	65	0	1	78.0	12	21	71	6	1	96.5
13	14	71	0	0	78.0	13	17	65	2	0	77.5
14	21	58	1	0	70.5	14	24	59	3	0	77.0
15	15	53	0	2	66.5	15	26	52	1	2	73.0
16	12	70	3	0	82.0	16	33	67	3	1	92.5
17	22	62	2	0	77.0	17	25	83	4	3	112.5
18	14	58	0	3	74.0	18	16	77	3	1	94.0
19	8	44	0	1	51.0	19	14	74	2	0	85.0
20	10	47	1	0	54.0	20	8	62	0	0	66.0
21	7	35	1	0	40.5	21	11	58	1	1	68.5
22	7	41	0	0	44.5	22	7	66	0	0	69.5
23	4	36	0	0	38.0	23	7	52	0	0	55.5
TOTAL	249	1216	12	16	1412.5	TOTAL	331	1378	44	17	1682.5

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

過港部落88年9月非假日交通流量監測結果

過港部落88年9月假日交通流量監測結果

日期: 88/09/10

時 間	機車	小型車	大型車	特種車	PCU/H
0	0	2	0	0	2.0
1	0	2	0	0	2.0
2	1	0	0	0	0.5
3	0	0	0	0	0.0
4	0	0	0	0	0.0
5	3	1	0	0	2.5
6	6	3	0	0	6.0
7	17	7	0	0	15.5
8	16	11	0	0	19.0
9	6	2	0	0	5.0
10	2	2	0	0	3.0
11	1	4	0	0	4.5
12	3	3	0	0	4.5
13	2	1	0	0	2.0
14	0	3	0	0	3.0
15	3	2	0	0	3.5
16	2	4	0	0	5.0
17	11	7	0	0	12.5
18	10	11	0	0	16.0
19	5	2	0	0	4.5
20	2	3	0	0	4.0
21	1	2	0	0	2.5
22	1	2	0	0	2.5
23	0	1	0	0	1.0
TOTAL	92	75	0	0	121.0

時間	機車	小型車	大型車	特種車	PCU/H
0	2	2	0	0	3.0
1	0	1	0	0	1.0
2	0	0	0	0	0.0
3	0	1	0	0	1.0
4	0	2	0	0	2.0
5	2	1	0	0	2.0
6	2	3	0	0	4.0
7	6	7	0	0	10.0
8	10	14	0	0	19.0
9	3	10	0	0	11.5
10	4	9	0	0	11.0
11	2	13	0	0	14.0
12	5	7	0	0	9.5
13	1	16	0	0	16.5
14	2	10	0	0	11.0
15	4	7	0	0	9.0
16	12	4	0	0	10.0
17	6	12	0	0	15.0
18	14	18	0	0	25.0
19	10	7	0	0	12.0
20	5	3	0	0	5.5
21	3	5	0	0	6.5
22	0	2	0	0	2.0
23	1	2	0	0	2.5
TOTAL	94	156	0	0	203.0

日期: 88/09/11

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

核四廠門口88年9月非假日交通流量監測結果

核四廠門口88年9月假日交通流量監測結果

日期: 88/09/13

時間	機車	小型車	大型車	特種車	PCU/H
0	2	7	0	0	8.0
1	4	5	0	0	7.0
2	1	5	0	0	5.5
3	3	3	0	0	4.5
4	2	3	0	0	4.0
5	2	6	0	0	7.0
6	4	8	0	1	13.0
7	6	31	0	1	37.0
8	11	27	3	0	38.5
9	8	30	5	2	50.0
10	5	33	4	3	52.5
11	2	25	4	5	49.0
12	2	27	3	4	46.0
13	3	18	0	6	37.5
14	4	29	3	2	43.0
15	5	34	0	0	36.5
16	7	30	2	0	37.5
17	8	38	2	2	52.0
18	3	26	3	0	33.5
19	2	17	0	0	18.0
20	2	20	1	0	23.0
21	4	14	0	0	16.0
22	2	15	0	0	16.0
23	3	10	0	0	11.5
TOTAL	95	461	30	26	646.5

時間	機車	小型車	大型車	特種車	PCU/H
0	2	3	0	0	4.0
1	0	7	0	0	7.0
2	3	5	0	0	6.5
3	0	4	0	0	4.0
4	0	2	0	0	2.0
5	4	5	0	1	10.0
6	5	7	0	0	9.5
7	6	14	1	1	22.0
8	6	22	1	2	33.0
9	7	17	0	0	20.5
10	3	18	0	1	22.5
11	2	14	2	0	19.0
12	2	25	0	0	26.0
13	4	21	0	0	23.0
14	6	18	0	2	27.0
15	4	14	2	0	20.0
16	2	16	1	0	19.0
17	5	20	2	1	29.5
18	3	11	0	0	12.5
19	2	16	0	0	17.0
20	4	8	0	0	10.0
21	0	8	1	0	10.0
22	2	10	0	0	11.0
23	2	9	0	0	10.0
TOTAL	74	294	10	8	375.0

日期: 88/09/12

註:PCU/H=0.5*機車+1.0*小型車+2*大型車+3*特種車

核四施工環境監測地下水位調查月報表

民國 88 年 7月 單位:公尺

地面標高 11.62 8.56 5.93 5.41 15.47 16.71 18.09 42.30 43.56 55.25 19 井頂標高 12.12 9.07 6.43 5.93 15.59 17.21 18.58 42.89 44.00 55.77 19	M7 GM14 .49 43.15 .96 43.63 .96 43.63
井頂標高 12.12 9.07 6.43 5.93 15.59 17.21 18.58 42.89 44.00 55.77 19	.96 43.63
日期 天氣 12.12 9.07 6.43 5.93 15.59 17.21 18.58 42.89 44.00 55.77 19	.96 43.63
1 晴	
2 晴	
3 晴 2.40 3.87 2.59 3.30 12.76 3.61 17.31 13.47 11.87 11.88 7.	83 5.08
4 晴	
5 晴	
6 晴	
7 晴	
8 晴	
9 晴	•
10 晴 2.07 3.50 2.41 3.32 12.56 3.36 17.34 14.84 12.22 11.97 7.	60 5.30
15 晴 .	•
16 晴	
17 晴 2.07 3.85 2.79 3.50 12.71 3.56 17.43 15.18 12.16 12.00 7. 18 晴	77 5.45
19 晴	
20 晴	
23 雨	•
	 76 5.54
25 陰	70 3.54
26 陰	•
27 陰	<u> </u>
28 陰	
29 陰	
30 晴	
31 晴 2.18 3.70 2.59 3.65 12.97 3.52 17.58 15.74 12.36 12.32 7.	75 5.62

註:(1)"."表示無觀測。

⁽²⁾ 表中數值表示地下水水面至監測井井頂之距離,以監測井井頂之標高減去表中數值即為水位標高。

核四施工環境監測地下水位調查月報表

民國 88年 9月 單位:公尺

監測	井名稱	GM1	GM3	GM6	P5	P8	GM9	GM10	GM11	GM12	GM13	GM7	GM14
地面	標高	11.62	8.56	5.93	5.41	15.47	16.71	18.09	42.30	43.56	55.25	19.49	43.15
井頂	標高	12.12	9.07	6.43	5.93	15.59	17.21	18.58	42.89	44.00	55.77	19.96	43.63
日期	天氣	12.12	9.07	6.43	5.93	15.59	17.21	18.58	42.89	44.00	55.77	19.96	43.63
1	晴							•					•
2	雨		•	•	•	•		•	•	•			•
3	雨		•	•	•	•		•	•	•			•
4	雨	2.68	4.10	1.85	3.95	13.34	3.72	17.85	16.78	12.91	14.56	7.86	5.80
5	晴	•	•	•	•	•	•	•	•	•	•	•	•
6	晴	•	•	•	•	•	•	•	•	•	•	•	•
7	晴	•	•	•	•	•	•	•	•	•	•	•	•
8	晴	•	•	•	•	•	•	•	•	•	•	•	•
9	晴	•	•	•	•	•	•	•	•	•	•	•	•
10 11	晴 晴	2.64	3.98	3.09	3.98	13.95	3.86	17.91	16.88	12.83	14.35	7.77	5.87
12	雨	2.04	3.90	3.09	3.90	13.93	3.60	17.91	10.00	12.03	14.33	1.11	3.67
13	雨	•	•	•	•	•	•	•	•	•	•	•	•
14	雨	•	•	•	•	•	•	•	•	•	•	•	•
15	雨	•	•	•	•	•	•	•	•	•	•	•	•
16	晴	•	•	•	•	•	•	•	•	•	•	•	•
17	晴		•	•	•	•	•	•	•	•	•	•	•
18	晴	2.88	3.94	2.68	3.97	14.00	3.75	17.92	17.29	13.08	14.46	7.70	5.86
19	晴		•	ē		•	•	•	•	•	•	•	•
20	雨												
21	雨		•	•	•	•	•	•	•	•	•	•	•
22	雨		•	•	•	•		•	•	•			•
23	晴					•		•					
24	晴					•		•	•.	•			<u>.</u>
25	晴	2.04	2.85	2.15	3.70	14.09	3.63	17.77	17.20	11.80	16.62	8.22	5.76
26	晴	•	•	•	•	•	•	•	•	•	•	•	•
27	晴	•	•	•	•	•	•	•	•	•	•	•	•
28	晴	•	•	•	•	•	•	•	•	•	•	•	•
29	晴	•	•	•	٠	•	•	•	ē	•	•	•	•
30	晴	二年胡加	•	•	•	•	•	•	•	•	•	•	•

註:(1)"."表示無觀測。

⁽²⁾ 表中數值表示地下水水面至監測井井頂之距離,以監測井井頂之標高減去表中數值即為水位標高。